DOI QR코드

DOI QR Code

A proposal of unit watershed for water management based on the interaction of surface water and groundwater

지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안

  • Kim, Gyoo-Bum (Department of Construction Safety and Disaster Prevention, Daejeon University) ;
  • Hwang, Chan-Ik (Industry-Academic Cooperation Foundation, Daejeon University)
  • 김규범 (대전대학교 건설안전방재공학과) ;
  • 황찬익 (대전대학교 산학협력단)
  • Received : 2020.05.01
  • Accepted : 2020.08.06
  • Published : 2020.09.30

Abstract

In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.

현재 우리나라는 수자원단위지도의 표준유역(850개) 및 KRF의 집수구역(7,807개) 등의 기준 도면이 수자원 정책 수립의 기본 도면으로 활용되고 있으나, 물관리 일원화 시점에 맞추어 지표수-지하수의 연계 관리 및 수량-수질 통합관리를 위해서는 보다 적절한 규모의 표준 도면 설정이 필요해 보인다. 지표수에 비하여 지하수는 느린 이동 속도를 보이고 3차원 흐름 특성을 갖고 있으므로 지표수-지하수 연계 평가를 위해서는 광역적 규모의 유역 보다는 준 유역 규모가 보다 효과적인데, 표준유역보다 평균 면적이 작은 KRF 집수구역은 1차 또는 2차 지류를 포함하는 준 유역 규모에 해당한다. 그러나, KRF는 지표수 수계를 기준으로 구역을 구분하였기 때문에 넓은 평지 또는 높은 산악지역에서는 지나치게 작거나 큰 면적을 갖고 있다. 따라서, 지표수-지하수 연계 통합 관리에 적합한 단위 유역은 기존 KRF 집수구역을 수정하여 설정하는 것이 필요하다. 이로부터 설정될 개소 당 약 5 ~ 15 ㎢ 면적의 단위 유역은 지류의 구성과 관정의 위치를 고려할 때 지방자치단체의 수자원 관리의 기본 단위가 될 수 있으며, 물수요-공급 평가, 수문 계측 시스템의 배치, 지하수 허가 총량 기준, 오염의 평가, 정책의 우선 순위 결정 등 실질적인 수자원 통합관리의 기본 수단으로 활용 가능할 것이다.

Keywords

References

  1. Barthel, R., and Banzhaf, S. (2015). "Groundwater and surface water interaction at the regional-scale-A review with focus on regional integrated models." Water Resources Management, Vol. 30, pp. 1-32. https://doi.org/10.1007/s11269-015-1163-z
  2. Candela, L., Elorza, FJ., Tamoh, K., Jimenez-Martinez, J., and Aureli, A. (2014). "Groundwater modelling with limited data sets: The Chari-Logone area (Lake Chad Basin, Chad)." Hydrological Processes, Vol. 28, No. 11, pp. 3714-3727. https://doi.org/10.1002/hyp.9901
  3. Choi, J.D., Lee, C.M., and Choi, Y.H. (1999). "Effect of land use on the water quality of small agricultural watersheds in Kangwondo." Journal of Environmental Research, Vol. 16, pp. 511-520.
  4. Gleeson, T., and Manning, A.H. (2008). "Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls." Water Resources Research, Vol. 44, W10403, doi:10.1029/2008WR006848.
  5. Jeon, S.R., Park, S.J., Kim, H.S., Jung, S.K., Lee, Y.U., and Chung, J.I. (2011). "Hydrogeochemical characteristics and estimation of nitrate contamination sources of groundwater in the Sunchang area, Korea." Journal of the Geological Society of Korea, Vol. 47, No. 2, pp. 185-197.
  6. Kim, G.B., and Hwang, C.I. (2019). "Application of regression tree model for the estimation of groundwater use at the agricultural (dry-field farming and rice farming) purpose wells." The Journal of Engineering Geology, Vol. 29, No. 4, pp. 417-425. https://doi.org/10.9720/kseg.2019.4.417
  7. Kim, G.B., Hwang, C.I., Shin H.J., and Choi, M.R. (2019). "Applicability of groundwater recharge rate estimation method based on artificial neural networks in unmeasurd areas." Journal of the Geological Society of Korea, Vol. 55, No. 6, pp. 693-701. https://doi.org/10.14770/jgsk.2019.55.6.693
  8. Kim, G.B., Kim, J.W., and Shin, H.J. (2019). "Estimation of groundwater usage for the living (domestic and business) purpose wells by using a regression tree method." Journal of the Geological Society of Korea, Vol. 55, No. 6, pp. 683-691. https://doi.org/10.14770/jgsk.2019.55.6.683
  9. Kim, H.K., Park, S.H., Kim, M.S., Kim, H.J., Lee, M.K., Lee, G.M., Kim, S.H., Yang, J.H., and Kim, T.S. (2014). "Contamination characteristics of agricultural groundwater around livestock burial areas in Korea." The Journal of Engineering Geology, Vol. 24, No. 2, pp. 237-246. https://doi.org/10.9720/kseg.2014.2.237
  10. Kim, K.H., and Jung, Y. (2019). "Estimating regional maximum floods using a runoff data spatial extention method in ungauged watersheds." Journal of the Korea Society of Hazard Mitigation, Vol. 19, No. 3, pp. 217-227. https://doi.org/10.9798/kosham.2019.19.3.217
  11. Kim, N.W., Chung, I.M., and Won, Y.S. (2006). "An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model." Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5B, pp. 481-488.
  12. Lee, H., Kim, K., Kang, T., Lee, S., Shin, C., Shin, G., Sin Y., Nam, G., and Kwon, M. (2011). "A study on standardization and construction of Korea reach file in three major river basins." National Institute of Environmental Research, NEIR No. NIER-RP2011-1366, p. 35.
  13. Ministry of Environment (MOE) (2019). Manual of groundwater affairs. p. 344.
  14. Ministry of Land, Infrastructure and Transport (MOLIT) (2017). Revised plan of national groundwater management, p. 185.
  15. Noh, D.N., Park, H.J., Cheong, J.Y., and Hamm, S.Y. (2018). "Groundwater recharge analysis and comparison using hybrid water-table fluctuation method and groundwater modeling : a case of Gangcheon basin in Yeoju city." Journal of the Geological Society of Korea, Vol. 54, No. 2, pp. 169-181. https://doi.org/10.14770/jgsk.2018.54.2.169
  16. Seaber, P.R., Kapinos, F.P., and Knapp, G.L. (1987). Hydrologic unit maps. U.S. Geological Survey Water-Supply Paper 2294, p. 63.
  17. Simcox, A.C. (1992). Water resources of Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 90-4144, U.S. Geological Survey, Boston, U.S., p. 94.
  18. Yang, J.H., Kim, H.K., Kim, M.S., Lee, M.K., Shin, I.K., Park, S.H., Kim, H.S., Ju, B.K., Kim, D.S., and Kim, T.S. (2015). "Evaluation of groundwater quality deterioration using the hydrogeochemical characteristics of shallow portable groundwater in an agricultural area" The Journal of Engineering Geology, Vol. 25, No. 4, pp. 533-545. https://doi.org/10.9720/kseg.2015.4.533
  19. Yu, H.S., Kang, D.H., Kwon, B.H., Go, D.H., and Hwang, J.H. (2010). "Investigation for NO3 - N contaminated sources of groundwater in the Hapcheon-Gun." Proceedings of Korean Society of Engineering Geology Conference 2010, KSEG, pp. 391-392.
  20. Zhou, Y., and Li, W. (2011). "A review of regional groundwater flow modeling." Geoscience Frontiers, Vol. 2, No. 2, pp. 205-214. https://doi.org/10.1016/j.gsf.2011.03.003