• Title/Summary/Keyword: Effective Design

Search Result 12,441, Processing Time 0.034 seconds

A Study on The Effective Utilization of Fragmented Small Space Design of Urban areas in Busan (부산시 자투리 소규모공간의 효율적 공간디자인 연구)

  • Ma, Lin;Kim, Myung-soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.145-155
    • /
    • 2021
  • With the massive expansion of cities in the 20th century, many fragmented small spaces are emerged. This research establishes a framework for analysis based on forward theories, and takes the development of small spaces in Busan as an example, draws conclusions through analysis, and construct a design model for the effective use of small spaces. Based on the theory of spatial design research, statistical analysis methods are used to analyse the effective use of fragmented small spaces in city. In order to provide guidance and reference suggestions when analyzing and researching this type of space design on the data collected from the survey in the future. The design of small spaces is a way to improve the efficiency of the space utilization through the reasonable design of this type of spaces. Urban space is designed to meet the requirements of urban residents as well as to consider the sustainable development of the environment and resources, society and culture. Meaningful solutions are proposed for the construction and development of the sustainable of the future urban spaces.

The Soundness Evaluation of Cam Shaft Moulding for the Commercial Vehicle Brake System (상용차 브레이크 캠샤프트 성형의 건전성 평가)

  • Cha, Yong-Hun;Sung, Back-Sub;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering effective plastic strain and temperature affected behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

Effective length factors for the framed columns with variable stiffness (골조구성 변단면 기둥의 유효길이 계수)

  • 이수곤;김순철;오금열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

An Experimental Study for Estimation of Effective Temperature for Design in Steel Box Girder Bridge (강박스거더교의 설계 유효온도 산정을 위한 실험적 연구)

  • Lee, Seong Haeng;Shin, Hyo Kyoung;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.449-458
    • /
    • 2016
  • The temperature data were measured for two years in a bridge specimen and the bridge in service nearby in order to calculate the effective temperature for thermal loads in steel box girder bridge. The maximum and minimum effective temperatures were calculated in the bridge specimen and the bridge according to air temperature in 2014, 2015 and 2years. The effective temperatures calculated in this study were compared the Euro code and the Highway Bridge Design Criteria. The coefficients of determination in the maximum effective temperature and the Euro code for 2 year were calculated from R = 0.927, R = 0.894 in a bridge specimen and the bridge respectively. Those of minimum temperature and the Euro code were analyzed from R = 0.992, R = 0.813 in two bridge respectively. Also, the results were evaluated as being very similar, or slightly increased as compared with the maximum temperature of the Korean Highway Bridge Design Code(Limit State Design).

Effective stiffness in regular R/C frames subjected to seismic loads

  • Micelli, Francesco;Candido, Leandro;Leone, Marianovella;Aiello, Maria Antonietta
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.481-501
    • /
    • 2015
  • Current design codes and technical recommendations often provide rough indications on how to assess effective stiffness of Reinforced Concrete (R/C) frames subjected to seismic loads, which is a key factor when a linear analysis is performed. The Italian design code (NTC-2008), Eurocode 8 and ACI 318 do not take into account all the structural parameters affecting the effective stiffness and this may not be on the safe side when second-order $P-{\Delta}$ effects may occur. This paper presents a study on the factors influencing the effective stiffness of R/C beams, columns and walls under seismic forces. Five different approaches are adopted and analyzed in order to evaluate the effective stiffness of R/C members, in accordance with the scientific literature and the international design codes. Furthermore, the paper discusses the outcomes of a parametric analysis performed on an actual R/C building and analyses the main variables, namely reinforcement ratio, axial load ratio, concrete compressive strength, and type of shallow beams. The second-order effects are investigated and the resulting displacements related to the Damage Limit State (DLS) under seismic loads are discussed. Although the effective stiffness increases with steel ratio, the analytical results show that the limit of 50% of the initial stiffness turns out to be the upper bound for small values of axial-load ratio, rather than a lower bound as indicated by both Italian NTC-2008 and EC8. As a result, in some cases the current Italian and European provisions tend to underestimate second-order $P-{\Delta}$ effects, when the DLS is investigated under seismic loading.

Evaluation of Effective Length Factor by Using an Amplification Factor (확장계수를 적응한 기둥의 유효좌굴길이 계수 산정)

  • Choi, Dong-Ho;Yoo, Hoon;Shin, Jay-In;Kim, Sung-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.369-374
    • /
    • 2007
  • For a stability design of steel frames, AISC-LRFD specification recommend to use Alignment Chart and story-based methods in order to determine an effective budding length. Recently, elastic buckling analysis, which is the method that calculate the effective length of members using eigenvalue of the overall structure, has been widely used in practical design of steel frames because this method can be performed effectively and automatically by computers. However, it can in some cases lead to unexpectedly large effective length in column having small axial forces. Therefore, this paper propose a method using elastic buckling analysis, which estimate a proper effective buckling length for all members having a small axial force. For verification of proposed method, it is compared with system based approach and stiffness distribution factor method. As a result, proposed method can rationally solve a problem in some case of column having small axial force. Also, adoption range for proposed method is established.

  • PDF

A Study on Selection of Effective Engineering Design Problem based on LEGO Mindstorm NXT for Basic Design Education (레고 마인드스톰 NXT를 활용한 기초설계 교과목에서의 효과적인 공학설계과제 선정방안 연구)

  • Shin, Youn-Soon;Sohn, Dai-Geun;Lee, Kyung-Ho;Hong, Sung-Ho;Lee, Kangwoo;Jung, Jin-Woo
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.60-69
    • /
    • 2016
  • This paper deals with the selection method of effective engineering design problem based on LEGO Mindstorm NXT for basic design education. By YouTube case study of various LEGO-based engineering designs for olympic sports, performance criteria have been developed including programming complexity, structural complexity, sensor/actuator complexity and variety of game operation. Programming complexity includes range of programming code length and possible program variety. Structural complexity includes variety of structural elements such as length, shape, weight, and volume to overcome design restrictions. Sensor/actuator complexity includes variety of sensor used and number of possible actuator assemblies. Variety of game operation includes game complexity and required creativity to make LEGO robots. Based on these performance criteria, four representative sports were selected as the candidates for effective engineering design problem. Finally, feasibility and attributes of each candidate were verified by real implementation examples.

Longitudinal Reinforcement Ratio for Performance-based Design of Reinforced Concrete Columns (철근콘크리트 기둥의 성능기반설계를 위한 주철근비)

  • Kim, Chang-Soo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2010
  • The longitudinal reinforcement ratio for the performance-based design of columns was studied. Unlike the existing design codes using uniform minimum reinforcement ratio and effective stiffness for all columns, the longitudinal reinforcement ratio of columns was defined as the function of various design parameters. To evaluate the minimum reinforcement ratio, two conditions were considered: 1) prevention of passive yielding of compression re-bars due to the creep and shrinkage of concrete under sustained service loads; and 2) ultimate flexural strength greater than the cracking moment capacity to maintain the ductility of columns for earthquake design. In addition, the effective flexural stiffness of columns for structural analysis was determined according to the longitudinal reinforcement ratio. The design method addressing the three criteria was proposed. The proposed method was applied to a design example.

3D Online Marshmallow Simulation Game for Target Value Design

  • Kim, Suryeon;Mainardi, Pete;Jeong, H. David;Rybkowski, Zofia;Seo, Jinsil Hwaryoung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.661-668
    • /
    • 2022
  • Various lean design and construction methods such as target value design, pull planning, value stream mapping have successfully transformed the commercial building construction industry into achieving improved productivity, higher design and construction quality, and meeting the target values of construction projects. Considering the significant advantages of lean, the accelerated dissemination and adoption of lean methods and tools for construction is highly desirable. Currently, the lean design and construction body of knowledge is imparted primarily through publications and conferences. However, one of the most effective ways to impart this soft knowledge is through getting students and trainees involved in hands-on participatory games, which can quickly help them truly understand the concept and apply it to real-world problems. The COVID-19 Pandemic has raised an urgent need of developing virtual games that can be played simultaneously from various locations over the Internet, but these virtual games should be as effective as in-person games. This research develops an online 3D simulation game for Target Value Design that is as effective as in-person games or possibly better in terms of knowledge capture and retention and enjoyable environment and experience. The virtual game is tested on volunteers using feedback from pre-and post- simulation surveys to evaluate its efficacy.

  • PDF