• Title/Summary/Keyword: Effect of Zn and Cu addition

Search Result 114, Processing Time 0.029 seconds

Magnetic Properties of Chip Inductors Prepared with V2O5-doped Ferrite Pastes (V2O5 도핑한 페라이트 페이스트로 제조된 칩인덕터의 자기적 특성)

  • Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • The purpose of this study Is to investigate the effect of $V_2$O$_{5}$ addition on the microstructures and magnetic properties of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2O_{5}$-doped NiCuZn ferrite pastes. With increasing the $V_2O_{5}$ content, the exaggerated grain growth of ferrite layers was developed due to the promotion of Ag diffusion and Cu segregation into the grain boundaries oi ferrites, which affected significantly the magnetic properties of the chip inductors. After sintering at $900^{\circ}C$, the inductance at 10 MHZ of the 0.5 wt% $V_2O_{5}$-doped chip inductor was 3.7 ${\mu}$H less than 4.2 ${\mu}$H of the 0.3 wt% $V_2O_{5}$-doped one, which was thought to be caused by the residual stress at the ferrite layers increased with the promotion of Ag diffusion and Cu segregation. The quality factor of the 0.5 wt% $V_2O_{5}$-doped chip inductor decreased with increasing the sintering temperature, which was considered to be caused by the electrical resistivity of the ferrite layer decreased with the promotion of Ag/cu segregation at the grain boundaries and the growth of the mean grain size of ferrite due to exaggerated grain growth of ferrite layers.

Chemical Compositions in Rainwater at Hiroshima Prefecture, Japan

  • Kim, Do-Hoon;Takeda, Kazuhiko;Sakugawa, Hiroshi;Lee, Jin-Sik
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • From May 1999 to July 2000, concentration of 17 metals (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sr, V, Zn), 4 ions (${NH_4}^+$, $Cl^-$, ${NO_3}^-$, ${SO_4}^{2-}$) and pH in rainwater were investigated. The volume-weighted mean concentrations (VWM) of ${NO_3}^-$ and ${SO_4}^{2-}$ were 16.0 and $17.0{\mu}mol\;L^{-1}$. The average pH was 4.53, which ranged from 3.83 to 6.06. The characteristic variations of these species were investigated in terms of the source of these species by principal component analysis (PCA) and interelement correlation coefficients. The elements were classified into three categories: anthropogenic source (Cd, Cu, Fe, Ni, Pb, V, Zn, ${NH_4}^+$, ${NO_3}^-$, ${SO_4}^{2-}$ and $H^+$), soil and crust dust (Al, Ba, Ca, Fe, Mn) and sea salts (Mg, Na, $Cl^-$). In addition, we compared the concentrations in rainwater, which were taken on the same day in three sites (Higashi-Hiroshima, an urban-facing area and a mountain-facing area of Mt. Gokurakuji) in order to examine the regional effect against the concentrations in them. At the urban-facing area of Mt. Gokurakuji, the concentrations of chemical compositions were higher than other areas.

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Effect of Cadmium-contaminated Brown Rice Diet on Accumulation of Heavy Metal in Rats (카드뮴 오염 현미 섭취에 의한 랫드의 체내 중금속 축적)

  • Kim, Jae-Young;Im, Hyo-Bin;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • Movement and accumulation of cadmium in male Sprague-Dawley rats, fed with brown rice from nearby Janghang smeltery area were investigated. The rat fed with five different cadmium level diets made with Cd-polluted during 12 weeks. The brown rice-polluted with 0.87 ppm Cd (PBR) was sampled from products in the Janghang smeltery area. Diets of brown rice group were brown rice (BR, 0.002 ppm Cd), each 50% of BR and PBR (BR+PBR 50%, 0.44 ppm Cd) and PBR (PBR 100%, 0.87 ppm Cd). To compare with BR+PBR 50%, the another group diet composed the feed (FE, 0.002 Cd ppm) and each 50% of FE and PBR (FE+PBR 50%, 0.44 ppm Cd). Accumulation of Cd, Zn and Cu in blood, liver and kidney rats was measured by GF-AAS. The weight gain in BR groups and FE groups were different 0.22-0.26 and 1.08-1.26 g/day, respectively. Daily intake cadmium was 10.77 and 22.36 ${\mu}g/rat$ in BR+PBR 50% and PBR 100%, and 8.83 ${\mu}g/rat$ in FE+PBR 50%. Cadmium contents in diets were higher, and total intake of the heavy metals was more increased on the whole. Weights of liver and kidney in FE+PBR 50% group was 2.64 and 2.27 folds higher than those in BR+PBR 50% group. Cadmium contents in blood were increased with intake of BR diet, but Zn and Cu were decreased with them. In the diet groups with the same Cd concentration, Cd content of FE+PBR 50% was higher 1.27 times than that of BR+PBR 50%. In the diet group of BR, BR+PBR 50%, and PBR 100%, the increase of Cd concentration was significantly different to the increase of Cd content in the livers. In the same condition of Cd concentration, Cd contents were higher in the BR+PBR 50% group. In the diet groups of BR, BR+PBR 50%, and PBR 100%, the increase of Cd content in the kidneys led to the increase of Zn and Cu contents. In the same condition of Cd concentration, the diet group with the addition of BR was shown to be 3.11 times higher than with the addition of FE. In view of the results so far achieved, It was closely related with Cd, Zn, and Cu content.

Effect of Additives on the Conidial Viability of Aspergillus sp. PS-104 (Aspergillus sp. PS-104의 분생포자 생활력에 미치는 첨가제 효과)

  • Kang, Sun-Chul;Kim, Eun-Lyang
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • A fungus, Aspergillus sp. PS-104, with the high phosphate-solubilizing activities was isolated from Korean upland soil and formulated into a solid powder type with various additives. For the long-time preservation of conidia, some additives (Tween 80, SDS, Triton X-100, glucose, glycerol, corn oil, bio-ceramic, PEG 200, $Cu^{++}$, $Mo^{+++}$, $Fe^{++}$, $Ca^{++}$ and $Zn^{++}$) were supplemented in the rice-cooked hard medium with various concentrations (0, 0.001, 0.01, 0.1, 1.0 and 5.0%). In case of surfactants. the highest relative viability of the Aspergillus sp. PS-104 conidia was recorded nearly to 80% by the addition of 0.01 to 0.1% Tween 80, while 50% in control. The number of conidia were found to be about 100 times higher when treated at 0.01 to 0.1% Tween 80 as compared to control. Relative viability of the conidia was decreased in order of Tween 80 $\geq$ SDS > Triton X-100 during the storage at $25^{\circ}C$. As regards the organic additives, the relative viability of Aspergillus sp. PS-104 conidia was also recorded nearly to 80% by the addition of 1.0% bio-ceramic, and 5.0% glucose and sucrose during the storage at $25^{\circ}C$. In case of metal ions, the relative viability of Aspergillus sp. PS-104 conidia was decreased in order of $Cu^{2+}>Ca^{2+}>Mo^{3+}>Zn^{2+}>Fe^{2+}$ during the storage at $25^{\circ}C$.

Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys (Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst (금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향)

  • Kim, Han-Gyu;Yang, Yoon-Cheol;Jeong, Kwang-Eun;Kim, Tae-Wan;Jeong, Soon-Yong;Kim, Chul-Ung;Jhung, Sung Hwa;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.418-425
    • /
    • 2013
  • The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.

Ion Effect on Steroid Bioconversion in Rhizopus nigricans (Rhizopus nigricans의 Steroid 전환 반응에 대한 이온의 변화)

  • Lee, Jung-Jin;Kim, Mal-Nam
    • The Korean Journal of Mycology
    • /
    • v.21 no.1
    • /
    • pp.23-27
    • /
    • 1993
  • Ion effects on $11{\alpha}-hydroxylation$ of progesterone and $5{\alpha}-reduction\;of\;11{\alpha}-hydroxyprogesterone$ by Rhizopus nigricans were investigated. Metal ions such as $Cu^{2+},\;Cd^{2+},\;Co^{2+},\;Mn^{2+},\;Zn^{2+},\;Fe^{2+},\;Mg^{2+},\;Fe^{3+}\;and\;Na^+$ reduced the $11{\alpha}-hydroxylation$ activity, while $K^+$ stimulated the same reaction. Enzyme activity for the $5{\alpha}-reduction$ of $11{\alpha}-hydroxyprogesterone$ was increased in the presence of $Fe^{2+},\;Mn^{2+},\;Mg^{2+},\;Co^{2+},\;Zn^{2+},\;Fe^{3+},\;K^+\;and\;Na^+$, whereas it was decreased in the presence of $Cd^{2+}\;and\;Cu^{2+}$. Potassium ion of $10^{-3}\;M\;$ of concentration was found to be effective for the promotion of $11{\alpha}-hydroxylation$. On the other hand, cadmium ion of $10^{-4}\;M$ was proved to suppress the $5{\alpha}-reduction$ reaction. Progesterone is reported to be transformed into $11{\alpha}-hydroxyprogesterone$ which, in turn, is converted further into $11{\alpha}-hydroxy-allopregnane-3$, 20-dione by R. nigricans. From this point of view, the highest yield of $11{\alpha}-hydroxyprogesterone$ could be obtained when potassium ion of $10^{-3}\;M$ was given initially followed by addition of cadmium ion of $10^{-4}\;M$ to limit conversion of 11{\alpha}-hydroxyprogesterone into $11{\alpha}-hydroxy-allopregnane-\;3$, 20-dione.

  • PDF

Remediation of Mine Tailings Contaminated with Arsenic and Heavy Metals: Removal of Arsenic by Soil Washing (비소와 중금속으로 오염된 광미의 정화: 토양세척에 의한 비소 제거)

  • Kim, Tae-Suk;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.808-816
    • /
    • 2008
  • In the present paper, a study has been performed on remediating mine tailings around abandoned mine contaminated with high concentrations of arsenic and heavy metals using the technique of soil washing. Through the removal experiment of arsenic, the optimal conditions in the type and concentration of washing reagent, mixing ratio of mine tailings and washing reagent, and washing time were derived. Results showed that the most effective washing reagents to remove arsenic from mine tailings were oxalic acid(72% removal efficiency) and phosphoric acid(65%), while the oxalic acid(89%) was the most effective in removing the heavy metals containing Cu. In addition, the most economical and efficient washing concentration was 0.25 M and the most suitable washing time was 30 minutes. The optimal mixing ratio of mine tailings and washing reagent was 1 : 20(mass/vol) from the viewpoint of minimization of wastewater produced after the washing, as well as the washing effectiveness. Although the mixture of washing reagents did not help in removal of arsenic, it could lead to much elevated synergy effect on removing Cu and Zn, compared with the single reagent.

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.