DOI QR코드

DOI QR Code

Effect of Additives on the Conidial Viability of Aspergillus sp. PS-104

Aspergillus sp. PS-104의 분생포자 생활력에 미치는 첨가제 효과

  • Published : 2007.03.27

Abstract

A fungus, Aspergillus sp. PS-104, with the high phosphate-solubilizing activities was isolated from Korean upland soil and formulated into a solid powder type with various additives. For the long-time preservation of conidia, some additives (Tween 80, SDS, Triton X-100, glucose, glycerol, corn oil, bio-ceramic, PEG 200, $Cu^{++}$, $Mo^{+++}$, $Fe^{++}$, $Ca^{++}$ and $Zn^{++}$) were supplemented in the rice-cooked hard medium with various concentrations (0, 0.001, 0.01, 0.1, 1.0 and 5.0%). In case of surfactants. the highest relative viability of the Aspergillus sp. PS-104 conidia was recorded nearly to 80% by the addition of 0.01 to 0.1% Tween 80, while 50% in control. The number of conidia were found to be about 100 times higher when treated at 0.01 to 0.1% Tween 80 as compared to control. Relative viability of the conidia was decreased in order of Tween 80 $\geq$ SDS > Triton X-100 during the storage at $25^{\circ}C$. As regards the organic additives, the relative viability of Aspergillus sp. PS-104 conidia was also recorded nearly to 80% by the addition of 1.0% bio-ceramic, and 5.0% glucose and sucrose during the storage at $25^{\circ}C$. In case of metal ions, the relative viability of Aspergillus sp. PS-104 conidia was decreased in order of $Cu^{2+}>Ca^{2+}>Mo^{3+}>Zn^{2+}>Fe^{2+}$ during the storage at $25^{\circ}C$.

포자의 장기보존 풍 생활력 유지를 위하여 계면활성제(Tween 80, SDS, Triton X-100) 및 2가 금속이온 $Ca^{2+}$, $Fe^{2+}$, $Cu^{2+}$, $Zn^{2+}$ 및 3가 금속이온 $Mo^{3+}$을 각각 0, 0.001, 0.01, 0.1, 1.0%(v/v) 농도로 첨가하여 생활력에 미치는 영향을 조사하였다. 또한 각종 유기물(PEG 200, glycerol, 식용유, 종합 vitamin, 설탕, 당밀)도 각각 0, 0.01, 0.1, 1.0, 5.0%(v/v) 농도로 첨가하여 2주, 4주, 2개월, 4개월, 6개월간 보관하면서 생활력을 검정하였다. 계면활성제 중 Tween 80을 $0.01%\sim1.0%$ 농도로 첨가하여 6개월 저장시 상대생존율이 80%에 이르렀으며, 이에 비해 대조구는 약 50% 수준이었다. 이때 분생포자수는 대조구에 비해서 약 100배 높은 수준이었다. 계면활성제 처리 후 저장기간에 따른 균의 생활력은 Tween $80{\geq}SDS>Triton$ X-100 순으로 감소하였다. 유기물 중에서 1.0% 맥반석, 5.0% glucose 및 설탕을 첨가하였을 때가 장기보존시 우수함을 확인하였으며 6개월 경과시 대조구는 초기에 비해 50%의 상대생존율을 보였으나 1.0% 맥반석 첨가시 상대생존율은 약 80%의 높은 수준을 유지하였다. 각종 금속이온을 0.1% 농도로 처리 후 저장기간에 따른 균의 생활력은 $Cu^{2+}>Ca^{2+}>Mo^{3+}>Zn^{2+}>Fe^{2+}$ 순으로 감소하였다.

Keywords

References

  1. Bolan, N. S. (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 65, 189-207
  2. Elmes, R. P. and Masse, B. (1984) Vesiculararbuscular endo mycorrhizae inoculum production. II. Experiments with maize(Zea mays) and other hosts in nutrient flow culture. Can. J. Bot. 62, 1531-1536 https://doi.org/10.1139/b84-203
  3. Jensen, A. (1982) Influence of four vesiculararbuscular mycorrhizal fungi on nutrient uptake and growth in Barley(Hordeum vulgan). New Phytol. 90, 45-50 https://doi.org/10.1111/j.1469-8137.1982.tb03239.x
  4. Menge, J. A. (1983) Utilization of vesiculararbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61, 1015-1024 https://doi.org/10.1139/b83-109
  5. Kumar, H., Arora, N. K., Kumar, V. and Maheshwari, D. K. (1999) Isolation, characterization and selection of salt tolerant Rhizobia nodulating Acacia catechu and A. nilotica. Symbiosis 26, 279-288
  6. Craig, G. F., Atkins, C. A. and Bell, D. T. (1991) Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant and Soil 133, 253-262 https://doi.org/10.1007/BF00009197
  7. Kim, K.Y., Jordon, D. and McDonald, G. A. (1988) Effect of Phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils. 26, 79-87 https://doi.org/10.1007/s003740050347
  8. Kim, H. O., Uo, Z. K., Lee, S. C. and Kucey, R. M. N. (1984) Mycorrhizae distribution and rock phosphate dissolution by soil fungi in the citrus fields in Jeju-do. Cheju Natl. Univ. J. 17, 45-50
  9. Suh, J. S., Lee, S. K., Kim, K. S. and Seong, K. Y. (1995) Solubilization of insoluble phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. J. Korean Soc. Soil Sci. Fert. 28, 278-286
  10. Choi, M. C., Chung, J. B., Sa, T. M., Lim, S. U. and Kang, S. C. (1997) Solubilization of insoluble phosphates by Penicillium sp. GL-101 isolated from soil. Agrie. Chem. Biotechnol. 40, 329-333
  11. Dubey, S. K. and Billore, S. D. (1992). Phosphate solubilizing microorganism(PSM) as inoculant and their role in augmenting crop productivity in india - A review. Crop Res. Hisar. 5, 11
  12. Kucey, R. M. N. (1988) Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261-270 https://doi.org/10.4141/cjss88-026
  13. Tiwari, V. N., Pathak, A. N. and Lehri, L. K. (1993) Rock phosphate-superphosphate in wheat in relation to inoculation with phosphate solubilizing organism and organic waste. Ind. J. Agr. Res. 27, 137-145
  14. Agasimani, C. A., Mudlagiriyappa and Sreenivasa, M. N. (1994) Response of groundnut to phosphate solubilizing microorganisms. Groundnut News 6, 5
  15. Illmer, P., Barbato, A. and Schirmer, F. (1995) Solubilization of hardly-soluble $AIPO_4$ with P-solubilizing microorganisms. Soil Biol. & Biochem. 27, 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  16. Sayer, J. A., Raggett, S. L. and Gadd, G. M. (1995) Solubilization of insoluble metal compounds by soil fungi: Development of a screening method for solubilizing ability and metal tolerance. Mycological Res. 99, 987-993 https://doi.org/10.1016/S0953-7562(09)80762-4
  17. Illmer, P. and Schinner, F. (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. & Biochem. 27, 257-263 https://doi.org/10.1016/0038-0717(94)00190-C
  18. Varsha, N., Jugnu, T. and Patel, H. H. (1993) Solubilization of natural rock phosphates and pure insoluble inorganic phosphates by Aspergillus awamori. Ind. J. Exp. Biol. 31, 747-749
  19. Varsha, N., Jugnu, T. and Patel, H. H. (1995) Mineral phosphate solubilization by Aspergillus aculeatus. Ind. J. Exp. Biol. 33, 91-93
  20. Paul, E. A. and Oark, F. E. (1989) Soil Microbiology and Biochemistry. Academic press, New York, USA
  21. Kang, S. C. and Choi, M. C. (1998) Isolation and cultural characteristics of a phosphate-solubilizing fungus, Penicillium sp. PS-113. Korean J. Biotechnol. Bioeng. 13, 497-501
  22. Kang, S. C., Ha, C. G., Lee, T. G. and Maheshwari, D. K. (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr. Sci. 82, 439-442
  23. Kang, S. C., Yang, M. O. and Tae, U. H. (2001) Mechanism of free phosphate production by Penicillium sp. GL-101, phosphate solubilizing fungus, in the submerged culture. Korean J. Environ. Agric. 20, 1-7
  24. Byrne, G. S. and Ward, O. P. (1989) Effect of nutrition on pellet formation by Rhizopus arrhizus. Biotechnol. Bioeng. 33, 912-914 https://doi.org/10.1002/bit.260330715
  25. Adamek, L. (1963) Submerged cultivation of the fungus Metarhizium anisopliae(Metch.). Folia Microbiologia 10, 255-257
  26. Inch, J. M. M. and Trinci, A. P. J. (1987) Effects of water activity on growth and sporulation of Paecilomyces farinosus in liquid and solid media. J. Gen. Microbiol. 113, 247-252
  27. Humphreys, A. M., Matewele, P., Trinci, A. P. J. and Gillespie, A. T. (1989) Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in fed-batch culture. Mycol. Res. 92, 257-264 https://doi.org/10.1016/S0953-7562(89)80063-2
  28. Kleespies, R. G. and Zimmermann, G. (1992) Production of blastospores by three strains of Metarhizium anisopliae (Metch.) sorokin in submerged culture. Biocontrol Sci. and Technol. 2, 127-135 https://doi.org/10.1080/09583159209355226
  29. Metz, B. and Kossen, N. W. F. (1977) The growth of molds in the form of pellets. Biotechnol. Bioeng. 19, 781-799 https://doi.org/10.1002/bit.260190602
  30. Elmayergi, H. (1975) Mechanisms of pellet formation of Aspergillus niger with an additive. J. Ferment. Technol. 53, 722-729
  31. Takahashi, J. and Yamada, K. (1959) Studies on the effects of some physical conditions on the submerged mold culture. II. On the two types of pellet formation in the saking culture. J. Agric. Chem. 33, 707-710
  32. Wainwright, M. P., Trinci, A. P. J. and Moore, D. (1993) Aggregation of spores and biomass of Phanerochaete chrysosporium in liquid culture and the effect of anionic polymers on this process. Mycol. Res. 97, 801-806 https://doi.org/10.1016/S0953-7562(09)81154-4
  33. Jimenez-Tobon, G. A., Penninckx, M. J. and Lejeune, R. (1997). The relationship between pellet size and production of Mn(II) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microbiol. Technol 21, 537-542 https://doi.org/10.1016/S0141-0229(97)00065-3
  34. Kang, S. C., Lee, D. G., Ha, C. G. and Lee, T. G. (1999) Culture conditions and additives affecting to the mycelial pellet size of Penicillium sp. GL-101 in the submerged culture. J. Korean Soc. Agric. Chem. Biotechnol. 42, 188-192
  35. Kang, S. C., Koo, B. S. and Tae, U. H. (2002) Effects of loess on the mycellial pellet formation of phosphate-solubilizing fungus, Aspergillus sp. PS-104 in the submerged culture. Korean J. Environ. Agric. 21, 17-23 https://doi.org/10.5338/KJEA.2002.21.1.017