• Title/Summary/Keyword: Effect of Regulation

Search Result 3,136, Processing Time 0.031 seconds

Effect of Cellular Zinc on the Regulation of C2-ceramide Induced Apoptosis in Mammary Epithelial and Macrophage Cell Lines

  • Han, S.E.;Lee, H.G.;Yun, C.H.;Hong, Z.S.;Kim, S.H.;Kang, S.K.;Kim, S.H.;Cho, J.S.;Ha, S.H.;Choi, YunJaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1741-1745
    • /
    • 2005
  • Zinc is a trace element that is associated with a stimulation of immune function and regulation of ion balance for livestock production. In this study, the effect of zinc as inhibitor to apoptosis-induced cells was examined in vitro using mammary epithelial cell line, HC11 and macrophage cell line, NCTC3749. Cell viability, measured by MTT assay, indicated that 10 g/ml of zinc had a negative impact on cellular activity and 50 ng/ml was chosen for further testing. Apoptosis was induced in cells treated with C2-ceramide in serum-free media. DNA fragmentation and gene expression of acidic sphingomyelinase (a gene responsible for the progress of apoptosis) were distinctively low in zinc treated cells compared with those in non-treated controls. In conclusion, zinc is involved in the regulation of cell proliferation and apoptosis in mammary epithelial cells and macrophages.

The Influence of Self-efficacy on Stability and Organization Culture of Marine Sports Participants (해양스포츠 참여자의 자기효능감이 사회성과 조직문화에 미치는 영향)

  • Ji, Sam-Up;Kim, Tae-Soo;Lee, Ho
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1165-1174
    • /
    • 2014
  • The research was conducted on 238 marine sports participants by clarifying the relationship among self-efficacy, sociality, and organization culture, to eliminate the organizational(home, school, club, workplace, etc.) culture maladjustment phenomenon which is caused by personal stress, the lack of physical activity, and the lack of sociality due to the rapid change of modern society and enhance sociality, adjustment to society and the lack of creativity due to the rigid hierarchy and contribute to organization culture through marine sports among sports which we enjoy with nature. Firstly, according to general self-efficacy, and social characteristics of the organizational culture and the gender differences in higher than women in all sub-variables of the sub-factors of self-efficacy and self-regulation, sociability, organizational culture, sub-culture and develop cultural factors agreed man showed that in the sub-factors of organization culture showed that the development of high culture and hierarchical culture in the age of 20s. Secondly, in terms of the effect of self-efficacy of marine sports participants on sociality, it is found that self-regulation and level of difficulty positively influence on the culture of agreement, the culture of development and the culture of hierarchy. Lastly, in terms of the effect of self-efficacy of marine sports participants on organizational culture, it is shown that self-regulation has positive influence on the culture of agreement, the culture of development and the culture of hierarchy.

MACT Application Effect in Petrochemical Industry to Minimize Benzene Fugitive Emission (석유화학산업의 벤젠 비산배출 저감을 위한 MACT 적용효과)

  • Kim, HunJang;Moon, Jinyoung;Hwang, Yongwoo;Kwak, Inho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.435-443
    • /
    • 2016
  • In this study, MACT (Maximum Achievable Control Technology) application effect was evaluated for minimization of benzene fugitive emission in petrochemical industry. Although fugitive emission for benzene in the nation was regulated by the Clean Air Conservation Act from 2015, the US EPA already has introduced MACT standard to minimize its emission with up-to-date technology since 1995. EPA Emission Factor (AP-42) and EPA MACT Standard Guideline were used to assess MACT application effect. As a result, For MACT application it could reduce benzene emission up to 98% (average) comparing with uncontrolled facility, while the national regulation could achieve about 95% (average) reduction which is slightly lower than MACT. However there is no control measure in the national regulation to reduce benzene emission for vessel loading even though MACT standard requires preventive facility such as VRU (Vapor Recovery Unit). For further reduction of benzene emission, it needs to be mandatory for operation of VRU when benzene product is loaded in vessel. These efforts could contribute to achieve the global level for benzene emission management in national petrochemical industry.

Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70

  • Jiang, Tao;Wang, Xingang;Wu, Weiwei;Zhang, Fan;Wu, Shifeng
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2016
  • Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

Role of Spinal Adenosine $A_2$ Receptor in the cardiovascular Regulation in Rats (흰쥐에서 실혈관 조절기전에 대한 척수의 Adenosine $A_2$수용체의 역할)

  • 문삼영;신현진;신인철;고현철;엄애선;박정로;김범수;강주섭
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.325-331
    • /
    • 2000
  • The present study was designed to assess the role of spinal adenosine $A_2$ receptor in the regulation of cardiovascular functions such as mean arterial pressure (MAP) and heart rate (HR) in male Sprague-Dawley rats. Rats (250~300 g) were anesthetized with urethane and paralyzed with d-tubocurarine and artificially ventilated. blood pressure and HR were continuously monitored via a femoral catheter connected to a pressure transducer and a polygraph. Drugs were administered intrathecally using injection cannula through guide cannula which was inserted inthrathecally at lower thoracic level through a puncture of an atlantooccipital mombrane. Intrathecal injection of an adenosine $A_2$ receptor agonist, 5'-(N-cyclopropyl)-carboxamaidoadenosine (CPCA; 1, 2 and 3 nmol, respectively), produced a dose-dependent decrease in MAP and HR. Pretreatment with $N^{G}$-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor or 10 nmol of MDL-12,330, an adenylate cyclase inhibitor blocked significantly the depressor and bradycardic effect of 2 nmol of CPCA. But, Pretreatment with 3 nmol of bicuculline, gamma-aminobutyric acid A (GAB $A_{A}$) receptor antagonist, or 50 nmol of 5-aminovaleric acid, GAB $A_{B}$ receptor antagonist did not inhibit the depressor and bradycardic effect of 2 nmol of CPCA. These results indicate that adenosine $A_2$ receptor in the spinal cord plays an inhibitory role in the regulation of cardiovascular function and that the depressor and bradycardic action of adonosine $A_2$ receptor are mediated via the synthesis of nitric oxide and the activation of adenylate cyclase in the spinal cord of rats.s.s.s.

  • PDF

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

A Simulation Model Development for Analyzing Ripple Effect of Housing Policy by Region (주택 정책의 지역별 시장 파급효과 분석을 위한 시뮬레이션 모델 개발)

  • Yoon, Inseok;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.68-78
    • /
    • 2019
  • Recently, housing prices have surged, and the government has implemented various regulations, such as finance and taxes. Because of the policy, the nationwide housing price have stabilized, but polarization has occurred. Some argue that regulation can adversely affect the actual demand. Therefore, not only the correlation between market variables but also ripple effect of policy has to be analyzed in policy planning and analysis from a microscopic point of view. In this study, a simulation model was developed by integrating system dynamics for analyzing market structure and agent-based model for modeling decision process of market participants. This research applied the financial regulation and the tax regulation to the model and evaluated the policy effectiveness. This study reveals which feedback dominates according to the policies, which have same purpose. It is because market participants make different decision for each policy. Furthermore, there were other ripple effects not only in the policy target submarket but also in other submarket.