• Title/Summary/Keyword: Effect of Operating Conditions

Search Result 811, Processing Time 0.031 seconds

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells (직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향)

  • Han, Chang-Hwa;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.292-298
    • /
    • 2011
  • This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Evaluation of Axial Buckling Effect in On-Line Axial Power Shape Synthesis (실시간 노심출력분포 합성에서의 축방향 경계조건 영향평가)

  • In, Wang-Kee;Kim, Joon-Sung;Yoon, Tae-Young;Auh, Geun-Sun;Kim, Hee-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.148-153
    • /
    • 1993
  • A fifth-order Fourier series technique is applied in Core Operating Limit Supervisory System (COLSS) to construct the on-line core average axial power shape from in-core detector signals because of its simplicity and fast computation. Such a synthesizing accuracy depends on number of Fourier series modes and axial boundary conditions. COLSS currently uses the five-mode Fourier series technique which utilizes the five axially located fixed in-core detector signals and a constant axial boundary condition. Therefore, the constant axial boundary condition should be appropriately chosen based on the evaluation of its effect on the accuracy of the on-line calculations. The four cases of axial buckling (0.75, 0.8, 0.9 and 1.0) were examined for Yonggwang Nuclear Units 3&4 as the axial boundary conditions in this paper. The core average axial power shapes and the operating margins were compared for each case to determine the optimal constant axial buckling. The axial buckling of 0.9 was found to be the optimal value.

  • PDF

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs (P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Ahn, Jung-Jun;Sung, Bum-Sik;Jung, Ji-Hwan;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

The Consequence Analysis for Fire Accidents by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 화재사고의 영향평가)

  • 윤대건;이헌창;함병호;조지훈;김태옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.3-15
    • /
    • 1998
  • The consequence analysis for jet and flash fire accidents by the continuous release of butane vapor was performed and effects of process variables on consequences were analyzed in standard conditions. For the continuous release (87.8 kg/s) of butane vapor at 8m elevated height in the debutanizing process of the naphtha cracking plant operating at 877 kPa, 346.75 K, we found that for the jet fire accident, shape and size of the flame could be predicted and thermal radiation estimated by API model at 200m distance from release point was 1.5kW/$m^2$, and that for the flash fire accident, effect range was 11.2~120.2m. Also, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, effects of operating pressures on XUFL were smaller(about 1/10) than those on XLFL for the flash fire accident.

  • PDF

A Study of Camber Effect on Contact Pressure Between Cam and Roller (캠-롤러 접촉압력에 대한 Camber효과에 관한 연구)

  • Chon, Seo-Hyeon;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Contact pressure occurs whenever two surfaces contact between cam and roller. Especially excessive pressure peaks occur at the ends of the contact region. Such as scuffing or pitting will be induced when these operating conditions continuously occur on the surface. Camber effect is given to reduce damage by changing the shape of roller. The objective of this paper is to calculate contact pressure distribution by using a contact analysis considering camber and tilting angle. These results predict that camber effect of all machine components have influence on contact pressure distribution.

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF