• Title/Summary/Keyword: Edison simulation

Search Result 85, Processing Time 0.025 seconds

Design and Implementation of Information Management Tools for the EDISON Open Platform

  • Ma, Jin;Lee, Jongsuk Ruth;Cho, Kumwon;Park, Minjae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1089-1104
    • /
    • 2017
  • We have developed an information management tool for the EDISON (EDucation-research Integration through Simulation On the Net) open platform. EDISON is, at present, a web-based simulation service for education and research in five computational areas, namely, nanophysics, fluid dynamics, chemistry, structural dynamics, and computer aided optimal design. The EDISON open platform consists of three tiers: EDISON application framework, EDISON middleware, and EDISON infra-resources. The platform provides web portals for education and research in areas such as computational fluid dynamics, computational chemistry, computational nanophysics, computational structural dynamics, and computer aided optimal design along with user service. The main purpose of this research is to test the behavior of the release version of the EDISON Open-Platform under normal operating conditions. This management tool has been implemented using the RESTful API designed in EDISON middleware. The intention is to check co-operation between the middleware and the infrastructure. Suggested tools include User management, Simulation and Job management, and Simulation software (i.e., solver) testing. Finally, it is considered meaningful to develop a management tool that is not supported in other web-based online simulation services.

Construction and Service of a Web-based Simulation software management system for the Computational Science and Engineering (계산과학공학 분야를 위한 웹 기반 시뮬레이션 소프트웨어 관리 시스템 구축 및 서비스)

  • Jeon, Inho;Kwon, Yejin;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.99-108
    • /
    • 2017
  • Open Science is evolving not only to share research results, but also to open the research process. We are developing the EDISON platform for the spread of open science in computational science and engineering. The EDISON platform provides online simulation services developed by computational science and engineering researchers. It also provides an environment for sharing source code, data, and related research publications. An effective simulation software registration management system is required for successful service on the EDISON platform. In this paper, we proposes a simulation software management system to provide online simulation service through EDISON platform. The proposed system allows the developer to register the simulation software on the EDISON platform without administrator intervention and effectively build a web-based simulation environment.

A Flexible and Expandable Representation Framework for Computational Science Data

  • Kim, Jaesung;Ahn, Sunil;Lee, Jeongchoel;Lee, Jongsuk Ruth
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • EDISON is a web-based platform that provides easy and convenient use of simulation software on high-performance computers. One of the most important roles of a computational science platform, such as EDISON, is to post-process and represent the simulation results data so that the user can easily understand the data. We interviewed EDISON users and collected requirements for post-processing and represent of simulation results, which included i) flexible data representation, ii) supporting various data representation components, and iii) flexible and easy development of view template. In previous studies, it was difficult to develop or contribute data representation components, and the view templates were not able to be shared or recycled. This causes a problem that makes it difficult to create ecosystems for the representation tool development of numerous simulation software. EDISON-VIEW is a framework for post-processing and representing simulation results produced from the EDISON platform. This paper proposes various methods used in the design and development of the EDISON-VIEW framework to solve the above requirements and problems. We have verified its usefulness by applying it to simulation software in various fields such as material, computational fluid dynamics, computational structural dynamics, and computational chemistry.

Interface Development for Pre and Post processor on EDISON Platform Simulation System (EDISON 플랫폼 시뮬레이션 시스템에서 전처리 및 후처리기 연계를 위한 인터페이스 개발)

  • Kwon, Yejin;Jeon, Inho;Seo, Jerry H.;Lee, Jongsuk R.
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The EDISON is a platform that supports numerical analysis for problem solving in computational science and engineering. We provide a cloud service for users, and provide an environment to access and execution of the simulation service on the web. For now, the EDISON platform provides simulation services for eight applied field on computational science engineering. Users can check the numerical analysis result by web in the computational science and engineering platform. In addition, various services such as community activity with other researchers, and the configuration of simulation environment by user 's needs can be provided. A representative service of the EDISON platform is a web-based simulation service that performs numerical analysis for problem solving of various computational science and engineering. Currently, EDISON platform provides workbench simulation service. It is the web-based simulation execution environment, and result analysis to provide simulation regardless of various personal computing resource or environment in each numerical analysis. In this paper, we build an interface for pre and post processor that can be used in conjunction with the workbench-based simulation service provided by EDISON platform. We provide a development environment with interface that is implemented by applying a pre and post processor optimized for the simulation service. According to simulation and execution are performed by linking the new workbench-based simulation service to the pre and post processor.

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼)

  • Jin, Du-Seok;Jung, Young-Jin;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.176-182
    • /
    • 2012
  • Recently, a new theoretical and methodological approach for computational science is becoming more and more popular for analyzing and solving scientific problems in various scientific disciplines and applied research. Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. In this paper, we present R&D of EDISON open integration platform that allows anyone like professors, researchers, industrial workers, students etc to upload their advanced research result such as simulation SW to use and share based on the cyber infrastructure of supercomputer and network. EDISON platform, which consists of 3 tiers (EDISON application framework, EDISON middleware, and EDISON infra resources) provides Web portal for education and research in 5 areas (CFD, Chemistry, Physics, Structural Dynamics, Computational Design) and user service.

EDISON_CHEM 솔버 기반 Multiscale Simulation의 가능성 제시 : 메탄의 Coarse-grained Force Field 구축과 열역학적 물성 연구

  • Jeong, Jin-Gwan
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.110-117
    • /
    • 2017
  • Multiscale Simulation은 sub-nano scale의 전자 구조에서부터 macro scale의 multibody system에 이르기까지 다양한 시간/공간 스케일을 관통하는 시뮬레이션 기법이다. 즉, 전자수준에서의 변화로 인한 분자 전체의 구조 변화와 그에 따른 기능의 변화를 알 수 있는 simulation 방법으로 다양한 스케일에서 분자의 정보를 얻을 수 있다는 점에서 최근 중요하게 여겨지는 시뮬레이션 방법 중 하나이다. 따라서 본 연구에서는 몇 가지의 EDISON_CHEM 솔버들을 조합하여 Multiscale Simulation의 가능성을 제시하고자 한다. 또한, 세부적으로 양자계산 시에 어떤 이론을 선택하여 계산하면 더 정확한지, basis set 선택 시 발생하는 basis set superposition error(BSSE)로 인한 분자 수준의 물성의 오차는 어느정도 인지 알아보고자 했다. 본 연구에서는 비교적 간단하지만 온실 가스이자 에너지원으로 각광받고 있는 메탄을 대상으로 하였다. 다양한 시공간 스케일을 다루는 에디슨 솔버들 중에 양자 수준의 계산을 할 수 있는 솔버로는 "GAMESS"를 이용했고, 이 결과를 통해 분자 수준의 물성을 알아보기 위한 솔버로는 "사용자 지정 역장을 사용한 일반 분자동력학(general_MD)"과 "두가지 서로 다른 종류의 LJ입자에 대한 분자동력 시뮬레이션 프로그램(sejong_lj))"을 이용했다. 메탄의 상 전이 과정에 대한 연구 결과 Hartree fock (HF) self-consistent theory를 통해 얻은 force field 보다는 Second-order Møller-Plesset (MP2) perturbation theory로 얻은 force field가 더 정확한 상 전이 온도를 예측한다는 것을 메탄의 coarse-grained simulation을 통해 알 수 있었다. 또한, MP2 이론으로 구한 force field에서 BSSE를 보정해주면 실험적으로 구한 메탄의 상 전이 온도와 더 근사한 값의 시뮬레이션 결과를 얻을 수 있었다. 이를 통해 전자 간의 상호작용을 더 정교하게 계산하는 MP2 이론으로 force field를 구해서 BSSE를 보정해주면 계산의 결과가 정확해진다는 것을 알 수 있었으며 이것이 EDISON_CHEM의 솔버들로 가능하다는 것을 제시하였다.

  • PDF

Analyze the channel doping concentration characteristics of junctionless nanowire transistors by using Edison simulation

  • Choi, Jun Hee;Lee, Byung Chul;Kim, Jung Do
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.266-268
    • /
    • 2013
  • In this paper, we study the channel doping concentration characteristics of junctionless nanowire transistors (JLT) using Edison nanowire FET device simulation. JLT has no junctions by very simple fabrication process. And this device has less variability and better electrical properties than classical inversion-mode transistors with PN junctions at the source and drain. In this simulation we use tri-gate structure. Source and drain doping concentration is $10^{20}atoms/cm^3$. The simulation results show that I-V characteristics of JLT change due to the variation of channel doping concentration.

  • PDF

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼)

  • Jin, Du-Seok;Jung, Young-Jin;Lee, Jong-Suk Ruth;Cho, Kum-Won;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.466-469
    • /
    • 2011
  • Recently, a new theoretical and methodological approach for computational science is becoming more and more popular for analyzing and solving scientific problems in various scientific disciplines such as Computational fluid dynamics, Chemistry, Physics, Structural Dynamics, Computational Design and applied research. Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. In this paper, we present R&D of EDISON open integration platform that allows anyone like professors, researchers, industrial workers, students etc to upload their advanced research result such as simulation SW to use and share based on the cyber infrastructure of supercomputer and network. EDISON platform, which consists of 3 tiers (EDISON application framework, EDISON middleware, and EDISON infra resources) provides Web portal for education and research in 5 areas (CFD, Chemistry, Physics, Structural Dynamics, Computational Design) and user service.

  • PDF

Analysis of Computational Science and Engineering SW Data Format for Multi-physics and Visualization

  • Ryu, Gimyeong;Kim, Jaesung;Lee, Jongsuk Ruth
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.889-906
    • /
    • 2020
  • Analysis of multi-physics systems and the visualization of simulation data are crucial and difficult in computational science and engineering. In Korea, Korea Institute of Science and Technology Information KISTI developed EDISON, a web-based computational science simulation platform, and it is now the ninth year since the service started. Hitherto, the EDISON platform has focused on providing a robust simulation environment and various computational science analysis tools. However, owing to the increasing issues in collaborative research, data format standardization has become more important. In addition, as the visualization of simulation data becomes more important for users to understand, the necessity of analyzing input / output data information for each software is increased. Therefore, it is necessary to organize the data format and metadata for the representative software provided by EDISON. In this paper, we analyzed computational fluid dynamics (CFD) and computational structural dynamics (CSD) simulation software in the field of mechanical engineering where several physical phenomena (fluids, solids, etc.) are complex. Additionally, in order to visualize various simulation result data, we used existing web visualization tools developed by third parties. In conclusion, based on the analysis of these data formats, it is possible to provide a foundation of multi-physics and a web-based visualization environment, which will enable users to focus on simulation more conveniently.