• Title/Summary/Keyword: Edge-based Classification

Search Result 142, Processing Time 0.029 seconds

Field Mismatch Compensation and Motion Blur Reduction System for Moving Images (동영상의 필드불일치 보정 및 움직임열화 제거 시스템 개발)

  • Choung, Yoo-Chan;Paik, Joon-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.81-87
    • /
    • 1999
  • In this research, we propose a field mismatch compensation method for interlaced scan image and a image restoration technique for removing motion blur. In order to compensate field mismatch, the edge classification-based linear interpolation technique and the method using the object-based motion compensation are described. We also propose an edge estimation method and an motion-based image segmentation algorithm. For removing motion blur, we adopt an adaptive iterative image restoration method using the motion-based segmentation result to improve the quality of restored image.

  • PDF

Nonlinear Anisotropic Filtering with Considering of Various Structures in Magnetic Resonance Imaging (자기공명영상에서 다양한 구조들을 고려한 비선형 이방성 필터링)

  • Song Young-Chul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.148-155
    • /
    • 2003
  • In this paper, a nonlinear anisotropic filtering method without the loss of important information happened due to the repeated filtering in magnetic resonance images is proposed. First of all original images are divided into four regions, e.g., SPR(Strong Plain Region), EPR(Easy Plain Region), SER(Strong Edge Region), and EER(Easy Edge Region). An optimal template among multiple templates is selected, then the nonlinear anisotropic filtering based on the template is applied in pixel by pixel basis. In the proposed algorithm, filtering strength of EER containing important information is adjusted very weak and filtering strength for remaining regions is also adjusted according to the degree of the importance. In spite of repeated filtering, resulting images by the proposed method could still preserve anatomy information of original images without any degradation. Compared to the existing nonlinear anisotropic filtering, the proposed filtering method with multiple templates provides higher reliability for filtered images.

Smart Contract Vulnerability Detection Study Based on Control Flow Graphs (제어 흐름 그래프 기반 스마트 컨트랙트 취약성 탐지 연구)

  • Yoo-Young Cheong;La Yeon Choi;Dong-Hyuk Im
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1247-1249
    • /
    • 2023
  • 스마트 컨트랙트는 블록체인 상에서 실행되는 프로그램으로 복잡한 비즈니스 논리를 처리할 수 있다. 그러나 블록체인의 무결성과 조건에 따라 실행되는 특성을 이용한 악의적 사용으로 인하여 블록체인 보안에서 시급한 문제가 되고있다. 따라서 스마트 컨트랙트 취약성 탐지문제는 최근 많은 연구가 이루어지고 있다. 그러나 기존 연구의 대부분이 단일 유형의 취약성 여부에 대한 탐지에만 초점이 맞춰져 있어 여러 유형의 취약성에 대한 동시 식별이 어렵다. 이 문제를 해결하고자 본 연구에서는 스마트 컨트랙트 소스코드 제어 흐름 그래프를 기반으로 그래프의 forward edge와 backward edge를 고려한 신경망으로 그래프 구조를 학습한 후 그래프 multi-label classification을 진행하여 다중 취약성을 탐지할 수 있는 모델을 제안한다.

Medical Image Retrieval based on Multi-class SVM and Correlated Categories Vector

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.772-781
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and retrieval of medical images. After color and edge features are extracted from medical images, these two feature vectors are then applied to a multi-class Support Vector Machine, to give membership vectors. Thereafter, the two membership vectors are combined into an ensemble feature vector. Also, to reduce the search time, Correlated Categories Vector is proposed for similarity matching. The experimental results show that the proposed system improves the retrieval performance when compared to other methods.

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.

Context-Based Minimum MSE Prediction and Entropy Coding for Lossless Image Coding

  • Musik-Kwon;Kim, Hyo-Joon;Kim, Jeong-Kwon;Kim, Jong-Hyo;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper, a novel gray-scale lossless image coder combining context-based minimum mean squared error (MMSE) prediction and entropy coding is proposed. To obtain context of prediction, this paper first defines directional difference according to sharpness of edge and gradients of localities of image data. Classification of 4 directional differences forms“geometry context”model which characterizes two-dimensional general image behaviors such as directional edge region, smooth region or texture. Based on this context model, adaptive DPCM prediction coefficients are calculated in MMSE sense and the prediction is performed. The MMSE method on context-by-context basis is more in accord with minimum entropy condition, which is one of the major objectives of the predictive coding. In entropy coding stage, context modeling method also gives useful performance. To reduce the statistical redundancy of the residual image, many contexts are preset to take full advantage of conditional probability in entropy coding and merged into small number of context in efficient way for complexity reduction. The proposed lossless coding scheme slightly outperforms the CALIC, which is the state-of-the-art, in compression ratio.

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Recovery of the connection relationship among planar objects

  • Yao, Fenghui;Shao, Guifeng;T amaki, Akikazu;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.430-433
    • /
    • 1996
  • The shape of an object plays a very important role in pattern analysis and classification. Roughly, the researches on this topic can be classified into three fields, i.e. (i) edge detection, (ii) dominant points extraction, and (iii) shape recognition and classification. Many works have been done in these three fields. However, it is very seldom to see the research that discusses the connection relationship of objects. This problem is very important in robot assembly systems. Therefore, here we focus on this problem and discuss how to recover the connection relationship of planar objects. Our method is based on the partial curve identification algorithm. The experiment results show the efficiency and validity of this method.

  • PDF

Survey on Detection and Recognition of Road Marking

  • Vokhidov, Husan;Hong, Hyung Gil;Hoang, Toan Minh;Kang, JinKyu;Park, Kang Ryoung;Cho, Hyeong Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1408-1410
    • /
    • 2015
  • Information about the painted road markings and other painted road objects play an important part in keeping safety of drivers. Some researchers have presented research approaches and dealt with road markings detection. In this paper, we present comprehensive survey of these techniques, and review some of them like a machine learning method, template matching method for road markings detection and classification, method of detection and classification of road markings using curve-based prototype fitting, signed edge signature method.