• 제목/요약/키워드: Edge-Computing System

검색결과 204건 처리시간 0.021초

BigCrawler: 엣지 서버 컴퓨팅·스토리지 모듈의 동적 구성을 통한 효율적인 빅데이터 처리 시스템 구현 및 성능 분석 (Implementation and Performance Aanalysis of Efficient Big Data Processing System Through Dynamic Configuration of Edge Server Computing and Storage Modules)

  • 김용연;전재호;강성주
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.259-266
    • /
    • 2021
  • Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.

엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현 (Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments)

  • 배주원;한병길
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구 (A Performance Comparison of Parallel Programming Models on Edge Devices)

  • 남덕윤
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

Edge Computing 성능 비교를 위한 Cloud 기반 빅데이터 시스템 구축 방안 (A Cloud-based Big Data System for Performance Comparison of Edge Computing)

  • 임환희;이태호;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.5-6
    • /
    • 2019
  • Edge Computing에서 발생하는 데이터 분석에 대한 알고리즘의 성능 평가나 검증은 필수적이다. 이러한 평가 및 검증을 위해서는 비교 가능한 데이터가 필요하다. 본 논문에서는 Edge Computing에서 발생하는 데이터에 대한 분석 결과 및 Computing Resource에 대한 성능평가를 위해 Cloud 기반의 빅 데이터 분석시스템을 구축한다. Edge Computing 비교분석 빅 데이터 시스템은 실제 IoT 노드에서 Edge Computing을 수행할 때와 유사한 환경을 Cloud 상에 구축하고 연구되는 Edge Computing 알고리즘을 Data Analysis Cluster Container에 탑재해 분석을 시행한다. 그리고 분석 결과와 Computing Resource 사용률 데이터를 기존 IoT 노드 Edge Computing 데이터와 비교하여 개선점을 도출하는 것이 본 논문의 목표이다.

  • PDF

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

Development of Edge Cloud Platform for IoT based Smart Factory Implementation

  • Kim, Hyung-Sun;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.49-58
    • /
    • 2019
  • In this paper, we propose an edge cloud platform architecture for implementing smart factory. The edge cloud platform is one of edge computing architecture which is mainly focusing on the efficient computing between IoT devices and central cloud. So far, edge computing has put emphasis on reducing latency, bandwidth and computing cost in areas like smart homes and self-driving cars. On the other hand, in this paper, we suggest not only common functional architecture of edge system but also light weight cloud based architecture to apply to the specialized requirements of smart factory. Cloud based edge architecture has many advantages in terms of scalability and reliability of resources and operation of various independent edge functions compare to typical edge system architecture. To make sure the availability of edge cloud platform in smart factory, we also analyze requirements of smart factory edge. We redefine requirements from a 4M1E(man, machine, material, method, element) perspective which are essentially needed to be digitalized and intelligent for physical operation of smart factory. Based on these requirements, we suggest layered(IoT Gateway, Edge Cloud, Central Cloud) application and data architecture. we also propose edge cloud platform architecture using lightweight container virtualization technology. Finally, we validate its implementation effects with case study. we apply proposed edge cloud architecture to the real manufacturing process and compare to existing equipment engineering system. As a result, we prove that the response performance of the proposed approach was improved by 84 to 92% better than existing method.

IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식 (Expert System-based Context Awareness for Edge Computing in IoT Environment)

  • 송준석;이병준;김경태;윤희용
    • 인터넷정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.21-30
    • /
    • 2017
  • 모든 사물에서 네트워크 및 컴퓨팅이 가능한 IoT(Internet of Things) 환경이 빠르게 확산되고 있다. IoT 환경은 클라우드 기반 중앙처리 구조를 통해 데이터를 처리하고 사용자에게 서비스를 제공하기 때문에 병목현상 및 서비스 지연이 발생할 수 있다. 이를 해결하기 위해, 최근 단말 IoT 노드와 네트워크에서 직접 데이터를 처리하여 사용자에게 서비스를 제공하는 Edge Computing이 주목받고 있으며 이러한 Edge Computing 환경에서 사용자에게 효율적으로 지능형 서비스를 제공하기 위한 연구가 지속되고 있다. 본 논문에서는 IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식 서비스 기법을 제안한다. 제안하는 기법은 자원 제한적인 IoT 노드 간 효율적인 협업을 기반으로 데이터를 실시간으로 처리하고 상황 인식을 통해 사용자에게 최적화된 맞춤형 서비스를 제공한다. 또한, 사용자는 사용 용도에 따라 직접 상황 인식 서비스를 수정하여 원하는 서비스를 제공받을 수 있다. 제안하는 기법을 스마트 홈 환경에서 3가지 방범 서비스 모드를 이용하여 테스트하였으며, 본 논문의 IoT 기반 전문가 시스템 서버와 기존 PC 기반 전문가 시스템 서버의 자원 소모량을 비교하여 제안하는 기법의 안정성을 입증하였다.

Mobile Edge Computing을 활용한 건물 재난 알림 시스템 구축 방안 (Mobile Edge Computing based Building Disaster Alert System Implementation)

  • 하태영;김준성;정종문
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.35-42
    • /
    • 2017
  • 본 논문은 MEC (Mobile Edge Computing)기술을 이용하여 건물에 재난이 발생 하였을 때 건물 내 사람들에게 재난에 대해 알리는 건물재난 알림 시스템 구현 방안에 대하여 제안한다. MEC의 개요를 설명하고, MEC를 활용한 네트워크의 구조와 특성을 파악한다. 추가적으로 기업 통합 패턴기반의 Apache Camel의 특성을 파악하고, 이를 활용한 MEC 구현 방안에 대해서 설명한다. 마지막으로 Apache Camel 기반의 MEC를 활용하여 재난 발생시, 센서들을 통해 재난상황을 빠르게 인식하고, 건물 내 사람들을 신속하게 대피할 수 있도록 돕는 건물재난 알림 시스템 구현 방안을 제시한다.

Design of Personalized Exercise Data Collection System based on Edge Computing

  • Jung, Hyon-Chel;Choi, Duk-Kyu;Park, Myeong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.61-68
    • /
    • 2021
  • 본 논문에서는 운동 재활 서비스에 제공할 수 있는 엣지 컴퓨팅 기반의 운동 데이터 수집 디바이스를 제안한다. 기존 클라우드 컴퓨팅 방식에서는 사용자가 급증하는 경우 데이터 센터의 처리량이 증가하여 많은 지연 현상을 발생하는 문제점을 가진다. 본 논문에서는 엣지 컴퓨팅을 이용하여 사용자측에서 3차원 카메라를 통한 영상 정보를 기반으로 포즈 에스티메이션을 적용한 신체 관절의 키포인트 위치를 측정하고 추정하여 서버에 전송하는 디바이스를 설계하고 구현하였다. 본 연구의 결과를 통하여 클라우드 시스템에 부하없이 원활한 정보 수집 환경을 구축할 수 있으며 운동 재활을 원하는 다양한 사용자를 대상으로 IoT 및 엣지 컴퓨팅 기술을 통한 개인 맞춤형 재활운동 코칭 시스템에 활용될 수 있을 것이다.