• 제목/요약/키워드: Edge-Computing System

Search Result 204, Processing Time 0.444 seconds

Implementation and Performance Aanalysis of Efficient Big Data Processing System Through Dynamic Configuration of Edge Server Computing and Storage Modules (BigCrawler: 엣지 서버 컴퓨팅·스토리지 모듈의 동적 구성을 통한 효율적인 빅데이터 처리 시스템 구현 및 성능 분석)

  • Kim, Yongyeon;Jeon, Jaeho;Kang, Sungjoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.259-266
    • /
    • 2021
  • Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

A Cloud-based Big Data System for Performance Comparison of Edge Computing (Edge Computing 성능 비교를 위한 Cloud 기반 빅데이터 시스템 구축 방안)

  • Lim, Hwan-Hee;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.5-6
    • /
    • 2019
  • Edge Computing에서 발생하는 데이터 분석에 대한 알고리즘의 성능 평가나 검증은 필수적이다. 이러한 평가 및 검증을 위해서는 비교 가능한 데이터가 필요하다. 본 논문에서는 Edge Computing에서 발생하는 데이터에 대한 분석 결과 및 Computing Resource에 대한 성능평가를 위해 Cloud 기반의 빅 데이터 분석시스템을 구축한다. Edge Computing 비교분석 빅 데이터 시스템은 실제 IoT 노드에서 Edge Computing을 수행할 때와 유사한 환경을 Cloud 상에 구축하고 연구되는 Edge Computing 알고리즘을 Data Analysis Cluster Container에 탑재해 분석을 시행한다. 그리고 분석 결과와 Computing Resource 사용률 데이터를 기존 IoT 노드 Edge Computing 데이터와 비교하여 개선점을 도출하는 것이 본 논문의 목표이다.

  • PDF

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

Development of Edge Cloud Platform for IoT based Smart Factory Implementation

  • Kim, Hyung-Sun;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.49-58
    • /
    • 2019
  • In this paper, we propose an edge cloud platform architecture for implementing smart factory. The edge cloud platform is one of edge computing architecture which is mainly focusing on the efficient computing between IoT devices and central cloud. So far, edge computing has put emphasis on reducing latency, bandwidth and computing cost in areas like smart homes and self-driving cars. On the other hand, in this paper, we suggest not only common functional architecture of edge system but also light weight cloud based architecture to apply to the specialized requirements of smart factory. Cloud based edge architecture has many advantages in terms of scalability and reliability of resources and operation of various independent edge functions compare to typical edge system architecture. To make sure the availability of edge cloud platform in smart factory, we also analyze requirements of smart factory edge. We redefine requirements from a 4M1E(man, machine, material, method, element) perspective which are essentially needed to be digitalized and intelligent for physical operation of smart factory. Based on these requirements, we suggest layered(IoT Gateway, Edge Cloud, Central Cloud) application and data architecture. we also propose edge cloud platform architecture using lightweight container virtualization technology. Finally, we validate its implementation effects with case study. we apply proposed edge cloud architecture to the real manufacturing process and compare to existing equipment engineering system. As a result, we prove that the response performance of the proposed approach was improved by 84 to 92% better than existing method.

Expert System-based Context Awareness for Edge Computing in IoT Environment (IoT 환경에서 Edge Computing을 위한 전문가 시스템 기반 상황 인식)

  • Song, Junseok;Lee, Byungjun;Kim, Kyung Tae;Youn, Hee Yong
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.21-30
    • /
    • 2017
  • IoT(Internet of Things) can enable networking and computing using any devices is rapidly proliferated. In the existing IoT environment, bottlenecks and service delays can occur because it processes data and provides services to users using central processing based on Cloud. For this reason, Edge Computing processes data directly in IoT nodes and networks to provide the services to the users has attracted attention. Also, numerous researchers have been attracted to intelligent service efficiently based on Edge Computing. In this paper, expert system-based context awareness scheme for Edge Computing in IoT environment is proposed. The proposed scheme can provide customized services to the users using context awareness and process data in real-time using the expert system based on efficient cooperations of resource limited IoT nodes. The context awareness services can be modified by the users according to the usage purpose. The three service modes in the security system based on smart home are used to test the proposed scheme and the stability of the proposed scheme is proven by a comparison of the resource consumptions of the servers between the proposed scheme and the PC-based expert system.

Mobile Edge Computing based Building Disaster Alert System Implementation (Mobile Edge Computing을 활용한 건물 재난 알림 시스템 구축 방안)

  • Ha, Taeyoung;Kim, Jungsung;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • In this paper, a building disaster notification system with MEC (Mobile Edge Computing) technology is proposed, which informs people in a building about the disaster. The overview of MEC is presented, and the structure and characteristics of network using MEC are described. In addition, the characteristics of a enterprise integration pattern based Apache Camel is described, and how to implement MEC with Apache Camel is presented. Finally, an implementation method of building disaster notification system with Apache Camel based MEC is proposed to quickly recognize disasters through sensors and to rapidly evacuate people from buildings.

Design of Personalized Exercise Data Collection System based on Edge Computing

  • Jung, Hyon-Chel;Choi, Duk-Kyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • In this paper, we propose an edge computing-based exercise data collection device that can be provided for exercise rehabilitation services. In the existing cloud computing method, when the number of users increases, the throughput of the data center increases, causing a lot of delay. In this paper, we design and implement a device that measures and estimates the position of keypoints of body joints for movement information collected by a 3D camera from the user's side using edge computing and transmits them to the server. This can build a seamless information collection environment without load on the cloud system. The results of this study can be utilized in a personalized rehabilitation exercise coaching system through IoT and edge computing technologies for various users who want exercise rehabilitation.