• Title/Summary/Keyword: Edge method

Search Result 3,937, Processing Time 0.028 seconds

Deinterlacing Using Multi-Directional Edge Information (다각도의 에지 정보를 이용한 디인터레이싱)

  • Lee, Dong-Wook;Kang, Mun-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • Deinterlacing methods are usually divided into inter-field deinterlacing and intra-field deinterlacing. The most common method of intra-field deinterlacing is the linear method which uses line doubling or line averaging. There are also some edge-enhancement methods such as ELA(Edge Based Line Average) and modified ELA. However, the linear interpolation generates edge blurring or staircase artifacts. The methods using ELA or modified ELA show poor deinterlacing at various types of edges because of insufficient edge information in a certain direction. This paper presents an intra-field deinterlacing algorithm that considers the interpolation based on edges in 7 directions and an edge line in the horizontal direction. It demonstrates better picture quality by reducing the staircase phenomenon of object in the conventional methods.

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Robust surface segmentation and edge feature lines extraction from fractured fragments of relics

  • Xu, Jiangyong;Zhou, Mingquan;Wu, Zhongke;Shui, Wuyang;Ali, Sajid
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.79-87
    • /
    • 2015
  • Surface segmentation and edge feature lines extraction from fractured fragments of relics are essential steps for computer assisted restoration of fragmented relics. As these fragments were heavily eroded, it is a challenging work to segment surface and extract edge feature lines. This paper presents a novel method to segment surface and extract edge feature lines from triangular meshes of irregular fractured fragments. Firstly, a rough surface segmentation is accomplished by using a clustering algorithm based on the vertex normal vector. Secondly, in order to differentiate between original and fracture faces, a novel integral invariant is introduced to compute the surface roughness. Thirdly, an accurate surface segmentation is implemented by merging faces based on face normal vector and roughness. Finally, edge feature lines are extracted based on the surface segmentation. Some experiments are made and analyzed, and the results show that our method can achieve surface segmentation and edge extraction effectively.

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Edge Computing-based Differential Positioning Method for BeiDou Navigation Satellite System

  • Wang, Lina;Li, Linlin;Qiu, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.69-85
    • /
    • 2019
  • BeiDou navigation satellite system (BDS) is one of the four main types of global navigation satellite systems. The current system has been widely used by the military and by the aerospace, transportation, and marine fields, among others. However, challenges still remain in the BeiDou system, which requires rapid responses for delay-sensitive devices. A differential positioning algorithm called the data center-based differential positioning (DCDP) method is widely used to avoid the influence of errors. In this method, the positioning information of multiple base stations is uploaded to the data center, and the positioning errors are calculated uniformly by the data center based on the minimum variance or a weighted average algorithm. However, the DCDP method has high delay and overload risk. To solve these problems, this paper introduces edge computing to relieve pressure on the data center. Instead of transmitting the positioning information to the data center, a novel method called edge computing-based differential positioning (ECDP) chooses the nearest reference station to perform edge computing and transmits the difference value to the mobile receiver directly. Simulation results and experiments demonstrate that the performance of the ECDP outperforms that of the DCDP method. The delay of the ECDP method is about 500ms less than that of the DCDP method. Moreover, in the range of allowable burst error, the median of the positioning accuracy of the ECDP method is 0.7923m while that of the DCDP method is 0.8028m.

Out-of-plane Structural Intensity Analysis of Rectangular Thick Plate (직사각형 후판의 면외 진동인텐시티 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • A numerical method is presented for an out-of-plane structural intensity analysis of rectangular thick plates with arbitrary elastic edge constraints. The method adapts an assumed mode method based on Timoshenko beam functions to obtain the velocities and internal forces needed for a structural intensity analysis. To verify the presented method, the structural intensity of a square thick plate under harmonic force excitation, for which four edges are simply supported, is analyzed, and the result is compared with existing solutions using the assumed mode method based on trigonometric functions. In addition, numerical analyses are carried out for a rectangular-shaped thick plate under harmonic force excitations, of which three edges are simply supported and one edge utilizes an arbitrary elastic edge constraint. These numerical examples show the good accuracy and applicability of the presented method for rectangular thick plates with arbitrary edge constraints.

Using Mean Shift Algorithm Enhance Edge Detection Effect (에지 추출 향상을 위한 Mean Shift 알고리즘의 이용)

  • Lei, Wang;Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.211-214
    • /
    • 2009
  • Edge detection always influenced by noise belong to the original image, therefore need use some methods to sort this issue, mean shift algorithm has the smooth function which suit for the edge detection purpose, so adopted to fade out the unimportant information, and the sensitive noise portions. After this section, use the Canny algorithm to pick up the contour of the objects we focus on, meanwhile select the Soble operator that has the orientation attribute to support the method work well. In final, take experiment and get the perfect result we wanted, make sure this method make sense and better than the sole Edge detection algorithm,

  • PDF

Edge Preserving Image Compression with Weighted Centroid Neural Network (신경망에 의한 테두리를 보존하는 영상압축)

  • 박동철;우영준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1946-1952
    • /
    • 1999
  • A new image compression method to preserve edge characteristics in reconstructed images using an unsupervised learning neural is proposed in this paper. By the unsupervised competitive learning which generalizes previously proposed Centroid Neural Network(CNN) algorithm with the geometric characteristics of edge area and statistical characteristics of image data, more codevectors are allocated in the edge areas to provide the more accurate edges in reconstructed image. Experimental results show that the proposed method gives improved edge in reconstructed images when compared with SOM, Modified SOM and M/R-CNN.

  • PDF

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF