• Title/Summary/Keyword: Edge intelligence

Search Result 169, Processing Time 0.022 seconds

Bankruptcy Prediction with Explainable Artificial Intelligence for Early-Stage Business Models

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2023
  • Bankruptcy is a significant risk for start-up companies, but with the help of cutting-edge artificial intelligence technology, we can now predict bankruptcy with detailed explanations. In this paper, we implemented the Category Boosting algorithm following data cleaning and editing using OpenRefine. We further explained our model using the Shapash library, incorporating domain knowledge. By leveraging the 5C's credit domain knowledge, financial analysts in banks or investors can utilize the detailed results provided by our model to enhance their decision-making processes, even without extensive knowledge about AI. This empowers investors to identify potential bankruptcy risks in their business models, enabling them to make necessary improvements or reconsider their ventures before proceeding. As a result, our model serves as a "glass-box" model, allowing end-users to understand which specific financial indicators contribute to the prediction of bankruptcy. This transparency enhances trust and provides valuable insights for decision-makers in mitigating bankruptcy risks.

The principles of artificial intelligence and its applications in dentistry

  • Yoohyun Lee;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.4
    • /
    • pp.45-49
    • /
    • 2023
  • Digital dentistry has witnessed significant advancements in recent years, driven by extensive research following the introduction of cutting-edge technologies such as CAD/CAM and 3D oral scanners. Until now, 2D images obtained via x-ray or CT scans were critical to detect anomalies and for decision-making. This review describes the main principles and applications of supervised, unsupervised, and reinforcement learning in medical applications. In this context, we present a diverse range of artificial intelligence networks with potential applications in dentistry, accompanied by existing results in the field.

Comparison of Performance According to Preprocessing Methods in Estimating %IMF of Hanwoo Using CNN in Ultrasound Images

  • Kim, Sang Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.185-193
    • /
    • 2022
  • There have been various studies in Korea to develop a %IMF(Intramuscular Fat Percentage) estimation method suitable for Hanwoo. Recently, a %IMF estimation method using a convolutional neural network (CNN), a kind of deep learning method among artificial intelligence methods, has been studied. In this study, we performed a performance comparison when various preprocessing methods were applied to the %IMF estimation of ultrasound images using CNN as mentioned above. The preprocessing methods used in this study are normalization, histogram equalization, edge enhancement, and a method combining normalization and edge enhancement. When estimating the %IMF of Hanwoo by the conventional method that did not apply preprocessing in the experiment, the accuracy was 98.2%. The other hand, we found that the accuracy improved to 99.5% when using preprocessing with histogram equalization alone or combined regularization and edge enhancement.

A Development of the Autonomous Berth Simulator(ABS) consisting of the newest Edge Computing and Artificial Intelligence useful for Smart Offshore Logistics (스마트 해상물류용 최신 에지 컴퓨팅과 인공지능을 구성한 자율접안 시뮬레이터의 개발)

  • Kang, YunMo;Kang, Yun Ho;Shin, Jae Seong;Yoo, Seung Hyeong;Park, Seung Chang
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.589-592
    • /
    • 2020
  • 본 논문은 스마트 해상 물류에 필요한 최신 Edge Computing과 인공지능을 구성한 자율 접안 시뮬레이터의 개발이다. 먼저, 스마트 해상 물류에서 선박의 접안에 관한 요구 사항을 분석하고, 다음으로 그 분석된 결과를 사용하여 서비스, 시스템, 핵심부품을 설계하고 제작한다. 결국, 본 논문은 스마트 해상물류에 필요한 자율접안 시뮬레이터를 개발한다. 향후, 본 논문은 실제 스마트 해상 물류에 필요한 Edge Computing과 인공지능의 기계 학습 알고리즘을 개발할 계획이다.

Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots (재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술)

  • Choi, Jin-Tak;Kang, Kyung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

A Study on the Informatization and Intelligent Strategy of Education and Training based on 4th Industrial Revolution Technology (4 산업혁명 기술 기반 교육훈련 정보화 및 지능화 전략)

  • Lee, Hee Nam
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2021
  • The advent of the 4th Industrial Revolution is also causing many changes in defense operations. Defense reform and the fourth industrial revolution promoted smart defense innovation, and attempts are being made to incorporate cutting-edge science and technology into various fields such as weapons systems and defense operations. Education and training is one of the areas in which information and intelligence are urgently needed in the spirit of defense operations. Due to the nature of defense education and training, which aims to fight against the enemy, there is no emphasis on psychological training in the field rather than informatization, but in developed countries with various experiences of modern warfare, investment and vitalization of education and training are vital. Through this, efforts are being made to foster soldiers with problem-solving skills in uncertain battlefields. The informatization and intelligence of defense education and training is no longer a matter that can be delayed, and the innovation of education and training using cutting-edge science and technology can be said to be an age-old task to improve the results of education and training in the fourth industrial revolution. The purpose of this is because the application of related technologies is not the goal itself as the 4th Industrial Revolution arrives, but it has been made possible through the rapid advancement of science and technology that has made it difficult to realize education and training, even though it has long been desired. Ultimately, education and training data will be integrated and artificial intelligence-based intelligent learning systems will maximize the performance of education and training, thereby improving the combat readiness.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Collaborative Inference for Deep Neural Networks in Edge Environments

  • Meizhao Liu;Yingcheng Gu;Sen Dong;Liu Wei;Kai Liu;Yuting Yan;Yu Song;Huanyu Cheng;Lei Tang;Sheng Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1749-1773
    • /
    • 2024
  • Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.