• 제목/요약/키워드: Edge devices

검색결과 451건 처리시간 0.029초

2차원 평판날개에서의 Tripwire가 공력에 미치는 영향 (Aerodynamics of a 2-D Flat-plate Airfoil with Tripwire)

  • 제두호;이종우
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, we experimentally investigated the effects of attached cylindrical tripwires on the aerodynamic performance. The research was carried out with a simple two-dimensional (2-D) rectangular airfoil fabricated from thin flat-plate aluminium, with elliptical leading and trailing edges. Tripwires of varying widths and thicknesses, and attack angles of $-5^{\circ}{\sim}20^{\circ}$ were used to investigate the aerodynamic characteristics (e.g. lift and drag forces) of the airfoil. We found that attaching the tripwires to the lower surface of the airfoil enhanced the lift force and increased the lift-to-drag ratio for low attack angles. However, attaching the tripwires to the upper surface tended to have the opposite effects. Moreover, we found that attaching the tripwires to the trailing edge had similar effects as a Gurney flap. The aerodynamic characteristics of the flat-plate airfoil with tripwires can be used to develop passive control devices for aircraft wings in order to increase their aerodynamic performance when gliding at low attack angles.

100nm 이하 Device에서의 CMP 기술의 문제점 및 향후 도전과제 (Issues in CMP Technology and Future Challenges for Sub-100nm Devices)

  • 윤성규;이재동;홍창기;조한구;문주태;류병일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.224-226
    • /
    • 2004
  • CMP process requirements become tighter especially in sub-100nm technology. Especially, high planarity and low defectivity appear as leading issues in CMP technology. Also, the introduction of new materials and advanced lithography technique increases CMP applications. Here are listed some major issues and challenges in CMP technology, which can be categorized following four items. These have practical significance and should be considered more concretely for future generation.

  • PDF

Comprehensive Survey on Internet of Things, Architecture, Security Aspects, Applications, Related Technologies, Economic Perspective, and Future Directions

  • Gafurov, Khusanbek;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.797-819
    • /
    • 2019
  • Internet of Things (IoT) is the paradigm of network of Internet-connected things as objects that constantly sense the physical world and share the data for further processing. At the core of IoT lies the early technology of radio frequency identification (RFID), which provides accurate location tracking of real-world objects. With its small size and convenience, RFID tags can be attached to everyday items such as books, clothes, furniture and the like as well as to animals, plants, and even humans. This phenomenon is the beginning of new applications and services for the industry and consumer market. IoT is regarded as a fourth industrial revolution because of its massive coverage of services around the world from smart homes to artificial intelligence-enabled smart driving cars, Internet-enabled medical equipment, etc. It is estimated that there will be several dozens of billions of IoT devices ready and operating until 2020 around the world. Despite the growing statistics, however, IoT has security vulnerabilities that must be addressed appropriately to avoid causing damage in the future. As such, we mention some fields of study as a future topic at the end of the survey. Consequently, in this comprehensive survey of IoT, we will cover the architecture of IoT with various layered models, security characteristics, potential applications, and related supporting technologies of IoT such as 5G, MEC, cloud, WSN, etc., including the economic perspective of IoT and its future directions.

최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안 (Method of Video Stitching based on Minimal Error Seam)

  • 강전호;김준식;김상일;김규헌
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.142-152
    • /
    • 2019
  • 기존 방송 콘텐츠 대비 더욱 생생한 현장감을 주는 초고해상도 콘텐츠에 대한 관심이 증가하고 있다. 하지만 기존의 방송 서비스에서 초고해상도 콘텐츠를 제공하기 위해서는 영상 획득 장치의 화각 및 개별 해상도 한계가 있다. 이러한 문제를 해결하기 위해 여러대의 입력 장치를 통한 영상합성 방법인 스티칭에 대한 연구가 다수 진행되고 있다. 본 논문에서는 기존 스티칭 연구에서의 단점 중 하나인 수평방향으로 촬영된 영상들 정합과정에서 이동하는 물체의 시불변성 훼손을 극복하기 위해, 최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안을 제안한다.

Design of Cloud Service Platform for eGovernment

  • LEE, Choong Hyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.201-209
    • /
    • 2021
  • The term, eGovernmen or e-Government, uses technology communications devices such as computers and the Internet to provide public services to citizens and others. The eGovernment or e-government provides citizens with new opportunities to access the government directly and conveniently, while the government provides citizens with directservices. Also, in these days, cloud computing is a feature that enables users to use computer system resources, especially data storage (cloud storage) and on-demand computing power, without having to manage themselves. The term is commonly used to describe data centers that are available to many users over the Internet. Today, the dominant Big Cloud is distributed across multiple central servers. You can designate it as an Edge server if it is relatively close to the user. However, despite the prevalence of e-government and cloud computing, each of these concepts has evolved. Research attempts to combine these two concepts were not being made properly. For this reason, in this work, we aim to produce independent and objective analysis results by separating progress steps for the analysis of e-government cloud service platforms. This work will be done through an analysis of the development process and architectural composition of the e-government development standard framework and the cloud platform PaaS-TA. In addition, this study is expected to derive implications from an analysis perspective on the direction and service composition of the e-government cloud service platform currently being pursued.

Overview of Motion-to-Photon Latency Reduction for Mitigating VR Sickness

  • Ryu, Yeongil;Ryu, Eun-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2531-2546
    • /
    • 2021
  • For several years, virtual reality (VR) and augmented reality (AR) technologies have been improving. However, some hurdles remain that slow down the distribution of VR and AR devices, such as head-mounted display (HMD), and related consumer content. One issue is VR motion sickness, which has been experienced by users using 360 degree VR content via HMD. This paper discusses the related international standardization work that classifies the factors causing VR sickness, and proposes the process for VR sickness level evaluation. Among the factors causing VR sickness, many research institutes regard minimizing MTP (Motion-to-Photon) latency as the key enabler to mitigate VR sickness. Thus, this paper introduces research trends of MTP latency measurement and MTP latency mitigation. This paper categorizes the research on MTP latency measurement into 2 categories of hardware-based approach and software code-level approach. The 2 approaches have different pros and cons depending on use-case, purpose, and architecture of each multimedia system. The pros and cons are addressed in this paper. Additionally, the research on mitigating MTP latency with diverse strategies such as proactive computing, caching, and edge server technology is explained, and compared to conventional technologies, shows improved performance.

임베디드 장비 상에서의 공개키 기반 암호를 위한 다중 곱셈기 최신 연구 동향 (Research on Multi-precision Multiplication for Public Key Cryptography over Embedded Devices)

  • 서화정;김호원
    • 정보보호학회논문지
    • /
    • 제22권5호
    • /
    • pp.999-1007
    • /
    • 2012
  • 공개키 기반 암호화 상에서의 다중 곱셈 연산은 높은 복잡도로 인해 성능 개선을 위해서는 우선적으로 고려되어야 한다. 특히 임베디드 장비는 기존의 환경과는 달리 한정적인 계산 능력과 저장 공간으로 인해 높은 복잡도를 나타내는 공개키 기반의 암호화를 수행하기에는 부적합한 특성을 가진다. 이를 극복하기 위해 다중 곱셈 연산을 빠르게 연산하고 적은 저장공간을 요구하는 기법이 활발히 연구되고 있다. 본 논문에서는 자원 한정적인 센서 네트워크 상에서의 효율적인 공개키 기반 암호화 구현을 위한 다중 곱셈기의 최신 연구 동향을 살펴본다. 이는 앞으로의 센서 네트워크상에서의 공개키 기반 암호화 구현을 위한 참고자료로서 활용이 가능하다.

굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발 (Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device)

  • 백희승;신종호;김성준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

Training-Free Hardware-Aware Neural Architecture Search with Reinforcement Learning

  • Tran, Linh Tam;Bae, Sung-Ho
    • 방송공학회논문지
    • /
    • 제26권7호
    • /
    • pp.855-861
    • /
    • 2021
  • Neural Architecture Search (NAS) is cutting-edge technology in the machine learning community. NAS Without Training (NASWOT) recently has been proposed to tackle the high demand of computational resources in NAS by leveraging some indicators to predict the performance of architectures before training. The advantage of these indicators is that they do not require any training. Thus, NASWOT reduces the searching time and computational cost significantly. However, NASWOT only considers high-performing networks which does not guarantee a fast inference speed on hardware devices. In this paper, we propose a multi objectives reward function, which considers the network's latency and the predicted performance, and incorporate it into the Reinforcement Learning approach to search for the best networks with low latency. Unlike other methods, which use FLOPs to measure the latency that does not reflect the actual latency, we obtain the network's latency from the hardware NAS bench. We conduct extensive experiments on NAS-Bench-201 using CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets, and show that the proposed method is capable of generating the best network under latency constrained without training subnetworks.

Improved Dynamic Programming in Local Linear Approximation Based on a Template in a Lightweight ECG Signal-Processing Edge Device

  • Lee, Seungmin;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.97-114
    • /
    • 2022
  • Interest is increasing in electrocardiogram (ECG) signal analysis for embedded devices, creating the need to develop an algorithm suitable for a low-power, low-memory embedded device. Linear approximation of the ECG signal facilitates the detection of fiducial points by expressing the signal as a small number of vertices. However, dynamic programming, a global optimization method used for linear approximation, has the disadvantage of high complexity using memoization. In this paper, the calculation area and memory usage are improved using a linear approximated template. The proposed algorithm reduces the calculation area required for dynamic programming through local optimization around the vertices of the template. In addition, it minimizes the storage space required by expressing the time information using the error from the vertices of the template, which is more compact than the time difference between vertices. When the length of the signal is L, the number of vertices is N, and the margin tolerance is M, the spatial complexity improves from O(NL) to O(NM). In our experiment, the linear approximation processing time was 12.45 times faster, from 18.18 ms to 1.46 ms on average, for each beat. The quality distribution of the percentage root mean square difference confirms that the proposed algorithm is a stable approximation.