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Abstract 

 
For several years, virtual reality (VR) and augmented reality (AR) technologies have been 
improving. However, some hurdles remain that slow down the distribution of VR and AR 
devices, such as head-mounted display (HMD), and related consumer content. One issue is VR 
motion sickness, which has been experienced by users using 360 degree VR content via HMD. 
This paper discusses the related international standardization work that classifies the factors 
causing VR sickness, and proposes the process for VR sickness level evaluation. 

Among the factors causing VR sickness, many research institutes regard minimizing MTP 
(Motion-to-Photon) latency as the key enabler to mitigate VR sickness. Thus, this paper 
introduces research trends of MTP latency measurement and MTP latency mitigation. This 
paper categorizes the research on MTP latency measurement into 2 categories of 
hardware-based approach and software code-level approach.  The 2 approaches have different 
pros and cons depending on use-case, purpose, and architecture of each multimedia system. 
The pros and cons are addressed in this paper. Additionally, the research on mitigating MTP 
latency with diverse strategies such as proactive computing, caching, and edge server 
technology is explained, and compared to conventional technologies, shows improved 
performance. 
 
 
Keywords: Motion-to-Photon latency, tile, video coding, viewport, VR sickness, 360 
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1. Introduction 

Recent developments in the 360 degree video technology for virtual reality (VR) and 
augmented reality (AR) applications are key next-generation factors in the field of multimedia 
technology. Therefore, the Moving Picture Experts Group (MPEG), an international standard 
organization, launched the MPEG-I (Coded Representation of Immersive Media, ISO/IEC 
23090) project in 2016 to develop standards for immersive media technologies, i.e., 3 degrees 
of freedom (3DoF), 3DoF+, 6DoF, and light fields. The project is expected to be completed by 
2021 [1, 2].  

Conversely, several factors have been slowing down the distribution of VR and AR devices, 
such as head-mounted display (HMD), and related consumer content. One issue is VR motion 
sickness, which has been experienced by users using 360 degree VR content via HMD [3]. 
Users experience motion sickness while using 360 degree VR content, owing to the 
disharmony between human motion and the senses from sensory organs in skin and muscles, 
eyes, and vestibular organs (Fig. 1).  

IEEE, another international standard organization, launched the IEEE 3079 standard (IEEE 
standard for HMD-based VR sickness reduction technology) [4]. Unlike MPEG-I, IEEE 3079 
standard focuses on the reduction of VR motion sickness. The IEEE 3079 standard defines the 
factors that affect the user’s VR sickness, and suggests the process for analyzing and 
evaluating the user’s VR sickness level in a quantitative domain. The standardization project 
for the IEEE 3079 was started in 2017, and it is expected to be finalized by 2021. Fig. 2 shows 
the timeline of the standardization of IEEE 3079 and related standard. 
 
 

 
 

Fig. 1. Three sensory organs, and the cause of motion sickness. 
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Fig. 2. The IEEE 3079 standardization project. 

 
 
 

 
 

Fig. 3. VR sickness level evaluation process in IEEE 3079.  
 
 

The factors that affect user VR sickness include the continuity of viewpoint, 3D sound, 
stitching optimization, latency minimization, resolution and flicker optimization, as shown in 
Table 1. IEEE 3079 surveyed the correlation between the factors and user motion sickness. 
IEEE 3079 used the result of the survey for subjective motion sickness evaluation and user 
bio-information for objective motion sickness evaluation. Based on the subjective and 
objective evaluation tools, IEEE 3079 proposed the VR sickness evaluation process and 
measurement metric in a quantitative domain. Fig. 3 depicts the VR sickness evaluation 
process of IEEE 3079, which can be useful for the VR sickness level of diverse VR 
multimedia systems with HMD and can be an indicator inducing VR sickness mitigation. 

Among the factors distinguished by IEEE 3079, Motion-to-photon (MTP) latency 
significantly induces the disharmony of the aforementioned senses when users experience 360 
degree VR content via HMD. MTP refers to the delay between the motion of the user, and the 
corresponding video shown on the display [5]. A lengthy MTP latency time intensifies VR 
motion sickness. Fig. 4 shows that MTP latency on HMD-based VR systems is caused by 
delays in motion sensor input and computation, motion sensor data communication, 
application computation, rendering computation, and display refresh [6]. Depending on the 
use of various applications, delays in application computation may refer to delays in video 
data decoding computation and communication. In addition, delays in the display refresh 
depend on the refresh rate of the HMD display. Fig. 5 shows that regular displays with refresh 
rates of (60 and 30) Hz have average delays of (8.3 and 16.6) ms, respectively; in the 
worst-case scenario, the refresh rates for (60 and 30) Hz can be as bad as (16.6 and 33.3) ms, 
respectively. 
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Table 1. Factors causing VR sickness. 

VR content design Management for VR scene VR scene capture 

 Continuity of viewport 
 Placement of Scene  

structure 
 3D sound 
 

 
 Optimization of viewport  

rotation 
 Optimization of scene 

 complexity 
 FoV adjustment 
 Placement of user interface 
 Visual flow 
 VR fidelity 
 Frame reference 
 

 Optimization of stitching 
 Rig structure 

Features of HMD device User’s human factor Management for Runtime 
environment 

 
 Minimization of latency 
 Optimization of frame rate 
 Optimization of stereo 3D 
 Optimization of resolution 
 Display types 
 Flicker optimization 
 

 Gender/age 
 Previous experience 
 Sensitivity to motion  

sickness 
 Tolerance for VR 

experience  
 VR sickness control 

 Motion platform sync 
 Vertical synchronization 
 Clinical trial 

 
As explained above, MTP latency has different characteristics depending on the 

multimedia system. Researchers have developed techniques to measure and reduce MTP 
latency, and such technologies are very important for the expansion of the VR and AR 
markets. 

The remainder of the paper is structured as follows. Sections 2 and 3 discuss research 
trends on techniques and technologies to measure and reduce MTP latency, while Section 4 
concludes the paper. 
 

 
Fig. 4. MTP latency in HMD systems and its causes. 
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Fig. 5. Output delays depending on the display refresh rate. 

2. Trends of Research on MTP Latency Measurement 
Several studies have considered different techniques to measure MTP latency, depending on 
the use and features of the target multimedia system. The studies can be classified into two 
categories: (1) studies that design and implement a hardware-based MTP latency measurement 
system, and (2) studies that suggest an MTP latency measurement technique based on a 
software code level. Sections 2.1 and 2.2 review research for the aforementioned categories, 
and discuss the limitations of the studies. 
 

2.1 Time Sequential MTP Latency Measurement System for HMD Developed by 
Sogang University  
In 2018, Choi et al. at Sogang University developed a hardware-based MTP latency 
measurement system using a device that mechanically mimics the motions of the human head 
model [7]. The proposed system comprises a motion generator that creates motions similar to 
human head movements and sightline changes based on the neck motion data of the user [8], 
and a photodetector system that measures the final delay of the HMD screen using photodiode 
modules. 

 
 

 
Fig. 6. Kinematic modeling of the motion generator. 
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Fig. 7. Mechanism of a photodiode. 

 
 

The motion generator uses servo motors to implement yaw and pitch rotations of the neck of 
the user. However, to simplify the system, the module does not consider roll rotation, which is 
less frequent. Fig. 6 shows that the motion generator mimics the joints and links in the human 
head using servo motors; the system uses forward kinematics [9, 10] to generate motions 
based on predefined user movement scenarios. 

The photodetector system comprises photodiode modules and a display. A photodiode is a 
semiconductor diode that generates output voltages proportional to the brightness of the input 
light (Fig. 7) [11]. The system uses such attributes of photodiodes to calculate the output 
voltage corresponding to the brightness of the input light. The output voltage can be 
reverse-converted to calculate brightness as well. 

The proposed system measures the MTP latency through the following processes: First, it 
configures a motion sequence that corresponds to a pre-defined scenario. Next, the sequence is 
entered into the motion generator and photodetector system. The motion generator creates 
physical movements based on the input motion sequence, and measures the resulting physical 
rotation angles. The output of the photodetector system is four square objects placed on a 
playing image. 

The brightness level of the square objects is determined by finding the corresponding 
motion sequence according to the mapping table listing the pre-defined brightness–rotation 
angle. Fig. 8 shows that the brightness of the two right-hand-side objects represents the yaw 
angle, while the brightness of the two left-hand-side objects represents the pitch angle. When 
these four square objects are overlaid on the screen, the photodiode modules receive the 
brightness information of the output objects to generate voltages that correspond to the 
brightness levels. Through this process, the photodetector system obtains the current rotation 
angle information output on the display. 

The proposed system compares the timing of the physical rotation angles measured by the 
motion generator, and that of the rotation angles measured by the photodetector system, 
thereby calculating the MTP latency in real time. Fig. 9 shows the system mechanism. 

The MTP latency measurement system proposed by Choi et al. at Sogang University is 
different from those proposed in other studies. This system generates physical motions based 
on pre-defined scenarios and measures MTP latency in real time. However, the study does not 
consider natural scene content, and focuses on computer-generated content. Another 
shortcoming is that the proposed system only supports the measurement of 2 DoF (yaw and 
pitch). 
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Fig. 8. Square objects that are placed on a scene to indicate yaw and pitch rotation angles. 

 
 

 
Fig. 9. Block diagram of the MTP measurement system. 

 

2.2 Software Code-Level MTP Latency Measurement by Fraunhofer HHI  
Fraunhofer HHI, the German research institute, suggested a software code-level MTP latency 
measurement technique while developing a low-latency cloud-based streaming system for 
volumetric videos in 2020 [12]. The proposed system does not directly transmit volumetric 
videos from the server to the client [13]. Rather, the server renders the 3D view of the 
volumetric video that corresponds to the current viewport of the user, after which the rendered 
3D view is converted to 2D images that are compressed and transmitted to the client. This 
method allows the client to offload 3D video processing into the server, thereby reducing the 
load on the client, and increasing the MTP latency. To reduce the MTP latency, the Fraunhofer 
HHI considered a software code-level approach, which can yield efficient processing, to 
measure the MTP latency. 

For accurate MTP latency measurement, the study defined MTP latency in the volumetric 
video streaming system as follows: 
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Tm𝑡𝑡p= Tserver + Tnetwork  +  Tclient    (1) 

 
Tserver, Tnetwork, and Tclient are defined in Eqs. (2)-(4), respectively: 
 

Tserver = Trend + Tenc      (2) 
Tnetwork = Tup+Tdown+Ttrans                                    (3) 

Tclient = Tdec+Tdisp                                       (4) 
 

Equation (2) refers to the delay time occurring on the server side, where Trend refers to the 
time required to render the volumetric images corresponding to the current viewport of the 
user; and Tenc refers to the time required to convert the 3D view of the rendered volumetric 
video to 2D images, and then encode using a video codec, such as H.264/AVC [14] or 
H.265/HEVC [15]. 

Equation 3 refers to the total delay time that occurred during the server–client data 
communication, where Tup and Tdown represent the propagation delay between the server and 
the client; and Ttrans refers to the time required to transmit the data. 

Equation (4) refers to the delay time on the client side, where Tdec is the time required to 
decode the received video data; and Tdisp refers to the delay time for outputting the decoded 
picture on the screen. 

Fig. 10 shows a schematic of how Eq. (1) is applied to a cloud-based volumetric video 
streaming system. In the study, the system makes software code-level recordings of time Ri, 
when the client application requests frame Fi corresponding to the viewport of the user, and 
time Di, when the requested frame is received and output to the display to measure the MTP 
latency based on Eq. (1) and Fig. 10. Then, to measure the MTP latency in a simplified manner, 
T𝑚𝑚𝑡𝑡𝑝𝑝 is obtained from Di − Ri. 

The MTP latency measurement technique of Fraunhofer HHI is different from the technique 
developed by Choi et al. at Sogang University; the Fraunhofer HHI technique is easier to 
implement than the hardware-based MTP latency measurement method, and considers delays 
occurring on the network. 
 

 
Fig. 10. Elements of MTP latency in a volumetric video streaming system. 
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3. Trends of Research on MTP Latency Reduction 
Along with the MTP latency measurement, MTP latency reduction is an essential element for 
the quality of experience (QoE) in immersive 360 degree VR content. Key MTP latency 
reduction technologies include mmWave communication, mobile edge computing, and 
proactive caching. Table 2 lists information about the requirements for providing highly 
reliable VR services, and key technologies necessary to satisfy each requirement [6]. The 
following sections discuss studies based on edge computing and proactive caching technology 
that support low-latency computing. 
 

Table 2. Requirements and key technologies for highly reliable VR services. 
Requirements Technology enablers 

High capacity  mmWave communications 

Low-latency 
computing 

 Edge computing 
 Proactive computing and caching 

Low-latency 
communication 

 Multi-connectivity 
 Multicasting 

Reliable 
communication  Multi-connectivity 

Scalability  Edge computing 
 Multicasting 

 

3.1 Adaptive Cropping Technique by AT&T Labs Research  
In 2019, AT&T Labs Research in the US proposed a technique that reduces the MTP latency 
by proactively caching technique and edge servers [16]. The proposed technique reduces the 
MTP latency during the server–client streaming of 360 degree game videos. Rather than 
streaming the entire 360 degree view, the system crops only the field of view (FoV) of the user 
for lower latency and computation. However, when the MTP latency is high, the margins 
surrounding the FoV are cropped, and additionally transmitted with the video data of FoV. In 
doing so, the system can output the video data of the additionally transmitted margin areas 
when the viewport of the user is outside the current FoV, thereby increasing the QoE of the 
streaming service, even when MTP latency is high, as shown in Fig. 11. 

The size of the additionally transmitted margin areas is determined based on the current 
MTP latency. It is determined in real time based on the pre-defined table analyzing the MTP 
latency and required margin sizes. This table deals with MTP latencies of (50, 100, 300, and 
500) ms, providing test results that indicate the optimal size of viewpoint that can cover the 
user’s movement at a specific MTP latency. Then, it maps the size of the margin areas that can 
fully (100 %) cover the corresponding scope of movements. 

Compared to the conventional method of streaming the entire 360 degree view, the 
proposed method reduced the bandwidth by 80 %. Moreover, this enables 8K live VR 
streaming. 
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Fig. 11. Adaptive cropping technique considering MTP latency. 

 

3.2 MTP Latency Reduction Technique for Tile-Based 360 degree Video 
Streaming Systems by UT Dallas  
In 2018, UT Dallas in the US proposed a caching technique for tile-based 360 degree video 
streaming systems in edge computing architecture [17]. Fig. 12 shows that tile-based video 
streaming divides the video into multiple tiles, and streams only necessary tiles [18, 19, 20, 21]. 
Compared with the conventional streaming of 8K, 16K, and other ultra-high-definition videos, 
this method can highly reduce the required network bandwidth and computational complexity 
[22, 23, 24].  

The proposed technique pre-analyzes the movement patterns of a user for each video 
content, thereby prioritizing each tile based on the frequency with which each tile is included 
in the FoV. To reduce the MTP latency, the video tiles are cached on the edge server based on 
priority. 

The study analyzed the movement patterns of the user for each content section using the 
user viewpoint information dataset [25] in 360 degree videos, which was presented by Lo et al. 
in 2017. Using the analysis results, the proposed system configures a heatmap of each tile in 
given intervals (Fig. 13). The heatmap represents the possibility that each tile can be included 
in the FoV. The proposed technique uses this information to prioritize caching tiles with a 
higher possibility of being included in the FoV, thereby reducing the MTP latency. 

The study conducted tests that compare the cache hit rate of the proposed method with that 
of generally used caching techniques, such as least recently used (LRU), and least frequently 
used (LFU) [26], caching methods. The test results indicated that compared with LRU and 
LFU, the proposed method had (20–40) % higher hit rates.  

 

 
 

Fig. 12. Example of tile-based video streaming. 
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Fig. 13. Example of user motion pattern heatmap. 
 

3.3 Saliency Map-based Bit-rate Adaptation for VR streaming by 
Sungkyunkwan University 
Lee et al. at Sungkyunkwan University proposed the motion-constrained tile set 
(MCTS)-based 360 degree VR streaming system with bit-rate adaptation technique using 
saliency map in 2019 [27]. The tile-based video streaming method is a highly efficient 
technique for VR multimedia systems with HMD, because it transmits only the video data in 
the user’s viewport. Therefore, compared to the conventional approach that transmits the 
entire pictures, a tile-based approach can achieve higher video quality at limited network 
bandwidth [28]. 

Although the tile-based approach has advantages in 360 degree video streaming, the 
prediction in the process to decode tiled video has a few hurdles. This is because when the 
reference video data was outside previous viewports at a client side, the reference video data of 
the tiles in the current viewport can be lost. Therefore, the server side in 360 degree video 
streaming systems needs to consider the coding structure that restricts the available search 
range for inter-picture prediction at the encoder level. 
 

 
(a)                                              (b)                                              (c) 

 

 
(d)                                              (e)                                              (f) 

 
Fig. 14. Example of saliency map. (a)-(c) L Test image in the Salient360! Dataset.  

(d)-(f): Corresponding saliency map prediction from the CNN-based saliency model. 
 
To solve this problem in tile-based 360 degree video streaming systems, MCTS was 

introduced. MCTS technique controls the search range for reference during temporal 
prediction to be in the viewport of the previous picture. This coding tool enables independent 
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decoding of each tile at the client side, regardless of the movement of the user’s viewport. 
Using MCTS achieves dramatic Bit-rate reduction in the entire streaming process, although 
the coding efficiency of each tile is slightly lower than the conventional coding scheme, owing 
to the restriction of the search range in temporal prediction [29, 30]. Son et al. implemented 
and tested the MCTS with HM (HEVC test model software) and SHM (SHVC test model 
software) in 2018 [31]. According to Son et al., MCTS in the tile-based video streaming 
system with 9 tiles achieves a bit-rate reduction of about 48 %, compared to the conventional 
HM [15] and SHM [32]. However, many factors, such as the number of tiles and the size of 
viewport, can change this result. 

To achieve improved performance, Lee et al. employs saliency detection technique [33, 34, 
35], as well as MCTS for viewport-dependent video streaming systems, such as 360 degree 
video streaming with HMD. The saliency detection in the research finds a probability 
distribution of user eye fixation information based on a convolutional neural network (CNN). 
Fig. 14 shows an example of saliency map with the Slient360! dataset [36], which is a platform 
for evaluating the performance of saliency mapping models. The authors assigned priorities to 
each tile. For example, tiles that have a higher probability are assigned higher priority and 
more bits than others. In doing so, the importance of each tile can be known, and more bits can 
be assigned to more important tiles for encoding. Table 3 outlines a brief procedure for the 
assigning of priority and bits based on a given network bandwidth and saliency map. 
 

Table 3. Proposed procedure of the quality adaptation based on saliency map. 
 BW: the available bandwidth [Mbps] 
 𝑅𝑅𝐿𝐿: quality level QP {22, 27, 32, 37} ∈ L representation 

 𝜏𝜏𝑖𝑖
𝑅𝑅𝐿𝐿: each tile with bitrate 𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖

𝑅𝑅𝐿𝐿  

 𝜏𝜏: list of tiles sorted by saliency map in each tile, ∀𝜏𝜏𝑖𝑖  ∈ 𝜏𝜏 
 Budget ← BW - ∑𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚% initialization for minimum bitrate 
 while 𝜏𝜏 ≠ 0 do 
  for 𝑅𝑅𝐿𝐿 ∋ 𝐿𝐿′ ≤ 𝐿𝐿 do 

   if 𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖
𝑅𝑅𝐿𝐿′  − 𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖

𝑅𝑅𝐿𝐿  ≤ Budget then 

    𝜏𝜏𝑖𝑖
𝑅𝑅𝐿𝐿 − 𝜏𝜏𝑖𝑖

𝑅𝑅𝐿𝐿′% quality assignment 
     Budget ←Budget − (𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖

𝑅𝑅𝐿𝐿′  − 𝜏𝜏𝑏𝑏𝑖𝑖𝑡𝑡𝑖𝑖
𝑅𝑅𝐿𝐿 ) 

   else 
    𝜏𝜏← 𝜏𝜏 − {𝜏𝜏𝑖𝑖} 
   end if 
  end for 
  𝑖𝑖 ← 𝑖𝑖 + 1 

 end while 
 
 

Table 4 shows that at 4 × 4, 6 × 3, 8 × 4, and 12 × 6 tiling, the proposed method achieves a 
BD-rate reduction of an average (17.2, 17.9, 18.9, and 20) %, respectively. The proposed 
method focuses on maximizing video quality at a limited network bandwidth, and it can be 
considered to achieve MTP latency optimization by the proactive computing technique. 
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Table 4. Bit-rate reduction of the proposed MCTS technique with saliency map 

Category 
BD-rate (%) 

4 × 4 6 × 3 8 × 4 12 × 6 
High motion -18.3 -19.1 -20.5 -22.1 
Low motion -16.2 -16.8 -17.4 -18.0 

Average -17.2 -17.9 -18.9 -20.0 

4. Conclusion  
This paper discussed hurdles for immersive 360 degree videos and VR/AR applications, and 
the related international standardization work was explained, which classifies the factors 
causing VR sickness, and proposes the process for VR sickness level evaluation. 

Among the factors causing VR sickness, many research institutes regard MTP latency as the 
key enabler to mitigate VR sickness. Thus, this paper introduced the research trends on MTP 
latency measurement, and categorized the research on MTP latency measurement into 2 
categories of hardware-based approach, and software code-level approach. Furthermore, the 
pros and cons of each research effort were discussed. 

Additionally, this paper introduced the key enablers for the highly reliable VR multimedia 
system, and research on mitigating MTP latency. The research employs proactive computing, 
caching, and edge server technology, and compared to conventional technologies, shows 
improved performance. 
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