• Title/Summary/Keyword: Edge devices

Search Result 446, Processing Time 0.028 seconds

Password Guessing Attack Resistant Circular Keypad for Smart Devices (패스워드 추정 공격에 강인한 스마트 기기용 순환식 키패드)

  • Tak, Dongkil;Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1395-1403
    • /
    • 2016
  • In recent years, researches of security threats reported that various types of social engineering attack were frequently observed. In this paper, we propose secure keypad scheme for mobile devices. In our scheme, every edge of keypad is linked each other, and it looks like a sphere. With this keypad, users input their password using pre-selected grid pointer. Because of circulation of the keypad layout, even though the attacker snatch the user password typing motion through the human eyes or motion capture devices, attacker do not estimate the original password. Moreover, without the information of grid pointer position, the attacker do not acquire original password. Therefore, our scheme is resistant to password guessing attack.

Performance Analysis on Intelligent Reflecting Surface Transmission for NOMA Towards 6G Systems

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.220-224
    • /
    • 2022
  • The efficiencies of rates and energy in the fifth generation (5G) wireless channels can be improved via intelligent reflecting surface (IRS) transmissions, towards the sixth generation (6G) mobile communications. While previous works have considered mainly optimizations of IRS transmissions, we propose a performance analysis on the total power in terms of the number of reflecting devices for IRS transmissions in non-orthogonal multiple access (NOMA) networks. First, we derive an analytical expression of the total power gain factor in terms of the number of reflecting devices for the cell-edge user in IRS-NOMA systems. Then we evaluate how many reflecting devices we need to obtain a total power gain in dB. Moreover, we also demonstrate numerically the signal-to-noise ratio (SNR) gain of the IRS-NOMA system over the conventional NOMA system based on the achievable data rate.

Recent Trends of Object and Scene Recognition Technologies for Mobile/Embedded Devices (모바일/임베디드 객체 및 장면 인식 기술 동향)

  • Lee, S.W.;Lee, G.D.;Ko, J.G.;Lee, S.J.;Yoo, W.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.133-144
    • /
    • 2019
  • Although deep learning-based visual image recognition technology has evolved rapidly, most of the commonly used methods focus solely on recognition accuracy. However, the demand for low latency and low power consuming image recognition with an acceptable accuracy is rising for practical applications in edge devices. For example, most Internet of Things (IoT) devices have a low computing power requiring more pragmatic use of these technologies; in addition, drones or smartphones have limited battery capacity again requiring practical applications that take this into consideration. Furthermore, some people do not prefer that central servers process their private images, as is required by high performance serverbased recognition technologies. To address these demands, the object and scene recognition technologies for mobile/embedded devices that enable optimized neural networks to operate in mobile and embedded environments are gaining attention. In this report, we briefly summarize the recent trends and issues of object and scene recognition technologies for mobile and embedded devices.

Graph Assisted Resource Allocation for Energy Efficient IoT Computing

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.140-146
    • /
    • 2023
  • Resource allocation is one of the top challenges in Internet of Things (IoT) networks. This is due to the scarcity of computing, energy and communication resources in IoT devices. As a result, IoT devices that are not using efficient algorithms for resource allocation may cause applications to fail and devices to get shut down. Owing to this challenge, this paper proposes a novel algorithm for managing computing resources in IoT network. The fog computing devices are placed near the network edge and IoT devices send their large tasks to them for computing. The goal of the algorithm is to conserve energy of both IoT nodes and the fog nodes such that all tasks are computed within a deadline. A bi-partite graph-based algorithm is proposed for stable matching of tasks and fog node computing units. The output of the algorithm is a stable mapping between the IoT tasks and fog computing units. Simulation results are conducted to evaluate the performance of the proposed algorithm which proves the improvement in terms of energy efficiency and task delay.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection (네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델)

  • Lee, Jong-Hwa;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.24 no.2
    • /
    • pp.24-34
    • /
    • 2021
  • Service providers using edge computing provide a high level of service. As a result, devices store important information in inner storage and have become a target of the latest cyberattacks, which are more difficult to detect. Although experts use a security system such as intrusion detection systems, the existing intrusion systems have low detection accuracy. Therefore, in this paper, we proposed a machine learning model for more accurate intrusion detections of devices in edge computing. The proposed model is a hybrid model that combines a stacked sparse autoencoder (SSAE) and a convolutional neural network (CNN) to extract important feature vectors from the input data using sparsity constraints. To find the optimal model, we compared and analyzed the performance as adjusting the sparsity coefficient of SSAE. As a result, the model showed the highest accuracy as a 96.9% using the sparsity constraints. Therefore, the model showed the highest performance when model trains only important features.

An Automatic Data Collection System for Human Pose using Edge Devices and Camera-Based Sensor Fusion (엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템)

  • Young-Geun Kim;Seung-Hyeon Kim;Jung-Kon Kim;Won-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.189-196
    • /
    • 2024
  • Frequent false positives alarm from the Intelligent Selective Control System have raised significant concerns. These persistent issues have led to declines in operational efficiency and market credibility among agents. Developing a new model or replacing the existing one to mitigate false positives alarm entails substantial opportunity costs; hence, improving the quality of the training dataset is pragmatic. However, smaller organizations face challenges with inadequate capabilities in dataset collection and refinement. This paper proposes an automatic human pose data collection system centered around a human pose estimation model, utilizing camera-based sensor fusion techniques and edge devices. The system facilitates the direct collection and real-time processing of field data at the network periphery, distributing the computational load that typically centralizes. Additionally, by directly labeling field data, it aids in constructing new training datasets.

Safety management service using voice chatbot for risks response of field workers (현장 작업자 위험대응을 위한 음성챗봇을 이용한 안전관리 서비스)

  • Yun-Hee Kang;Chang-Su Park;Yong-Hak Lee;Dong-Ho Kim;Eui-Gu Kim;Myung-Ju Kang
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.79-88
    • /
    • 2023
  • Recently, industrial accidents have continued to increase due to the industrialization, and worker safety management is recognized as essential to reduce losses due to hazardous factors at work places. To manage the safety of workers, it is required to apply customized safety management artificial intelligence technology that takes into account the characteristics of industrial sites, and a service for real-time risk detection and response to workers depending on the situation based on safety accident types and risk analysis for each task and process. The proposed safety management service consists of worker devices to acquire sensor data, edge devices to collect from IoT-based sensors, and a voice chatbot to support workers' disaster response. The voice chatbot plays a major role in interacting with workers at disaster sites to respond to risks. This paper focuses on real-time risk response using an IoT-based system and voice chatbot on a server for work safety according to the worker's situation. A Scenario-based voice chatbot is used to process responses at the edge level to provide safety management services.

  • PDF

Edge Enhancement of Halftone Image using Adaptive Error Diffusion Method (적응적 오차 확산법을 이용한 하프톤 영상의 경계선 개선)

  • Kim, Sang-Chul;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.96-104
    • /
    • 2011
  • A halftoning method is used to obtain a binary image visually similar to a continuous gray-level image through the image output devices employing the limited number of gray-levels. As a halftoning method, the error diffusion method is widely used in various applications because of its low computational complexity and good image quality. However, this method weakens the edge in the process of error diffusion to the neighboring pixels. In this case, degradation of the edge quality and damage of the vivid image is expected. To solve these problems, the proposed method determines the adaptive error filter considering the error information of the present pixel and edge distribution of the neighbor pixels. Compared with the conventional methods for enhancing edges, the proposed method involves relatively a few process resources because of its simple procedure, still considerably improving the edges in the halftone image. To evaluate the objective image quality, the performance of the proposed method is compared with that of the conventional method in terms of the edge correlation and the local average accordance.

FPGA-based Implementation of Fast Edge Detection using Sobel Operator (소벨 연산을 이용한 FPGA 기반 고속 윤곽선 검출 회로 구현)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1142-1147
    • /
    • 2022
  • The edges of image should be detected first so that the objects in the image can be identified. An hardware-implemented edge detection algorithm outperforms its software version. Sobel operation is the most suitable algorithm for an hardware implementation of edge detection. And lots of works have been done to perform Sobel operations efficiently on FPGA-based hardware. This work proposes how to implement fast edge detection circuit on FPGA, which is based on the conventional circuit for edge detection using Sobel operator. The newly proposed circuit is suitable for processing images when the images are stored in memory devices and outperforms the conventional one with little additional FPGA resources. Both the conventional circuit and the proposed circuit were implemented on an FPGA. And the result showed that the proposed circuit almost doubles the performance in processing images and needs little additional FPGA resources.