• Title/Summary/Keyword: Edge connected components

Search Result 37, Processing Time 0.018 seconds

Size-Independent Caption Extraction for Korean Captions with Edge Connected Components

  • Jung, Je-Hee;Kim, Jaekwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.308-318
    • /
    • 2012
  • Captions include information which relates to the images. In order to obtain the information in the captions, text extraction methods from images have been developed. However, most existing methods can be applied to captions with a fixed height or stroke width using fixed pixel-size or block-size operators which are derived from morphological supposition. We propose an edge connected components based method that can extract Korean captions that are composed of various sizes and fonts. We analyze the properties of edge connected components embedding captions and build a decision tree which discriminates edge connected components which include captions from ones which do not. The images for the experiment are collected from broadcast programs such as documentaries and news programs which include captions with various heights and fonts. We evaluate our proposed method by comparing the performance of the latent caption area extraction. The experiment shows that the proposed method can efficiently extract various sizes of Korean captions.

Text Region Detection using Edge and Regional Minima/Maxima Transformation from Natural Scene Images (에지 및 국부적 최소/최대 변환을 이용한 자연 이미지로부터 텍스트 영역 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.358-363
    • /
    • 2009
  • Text region detection from the natural scene images used in a variety of applications, many research are needed in this field. Recent research methods is to detect the text region using various algorithm which it is combination of edge based and connected component based. Therefore, this paper proposes an text region detection using edge and regional minima/maxima transformation algorithm from natural scene images, and then detect the connected components of edge and regional minima/maxima, labeling edge and regional minima/maxima connected components. Analysis the labeled regions and then detect a text candidate regions, each of detected text candidates combined and create a single text candidate image, Final text region validated by comparing the similarity and adjacency of individual characters, and then as the final text regions are detected. As the results of experiments, proposed algorithm improved the correctness of text regions detection using combined edge and regional minima/maxima connected components detection methods.

Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction (에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Characters in natural image are an important information with various context. Previous work of character region detection algorithms is not detect of character region in case of image complexity and the surrounding lighting, similar background to character, so this paper propose an method of character region detection in natural image using edge and connected component by morphological reconstructions. Firstly, we detect edge using Canny-edge detector and connected component with local min/max value by morphological reconstructed-operation in gray-scale image, and labeling each of detected connected component elements. lastly, detected candidate of text regions was merged for generation for one candidate text region, Final text region detected by checking the similarity and adjacency of neighbor of text candidate individual character. As the results of experiments, proposed algorithm improved the correctness of character regions detection using edge and connected components.

Correction of Signboard Distortion by Vertical Stroke Estimation

  • Lim, Jun Sik;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2312-2325
    • /
    • 2013
  • In this paper, we propose a preprocessing method that it is to correct the distortion of text area in Korean signboard images as a preprocessing step to improve character recognition. Distorted perspective in recognizing of Korean signboard text may cause of the low recognition rate. The proposed method consists of four main steps and eight sub-steps: main step consists of potential vertical components detection, vertical components detection, text-boundary estimation and distortion correction. First, potential vertical line components detection consists of four steps, including edge detection for each connected component, pixel distance normalization in the edge, dominant-point detection in the edge and removal of horizontal components. Second, vertical line components detection is composed of removal of diagonal components and extraction of vertical line components. Third, the outline estimation step is composed of the left and right boundary line detection. Finally, distortion of the text image is corrected by bilinear transformation based on the estimated outline. We compared the changes in recognition rates of OCR before and after applying the proposed algorithm. The recognition rate of the distortion corrected signboard images is 29.63% and 21.9% higher at the character and the text unit than those of the original images.

Reliability Modeling and Computational Algorithm of Network Systems with Dependent Components (구성요소가 서로 종속인 네트워크시스템의 신뢰성모형과 계산알고리즘)

  • 홍정식;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.88-96
    • /
    • 1989
  • General measure in the reliability is the k-terminal reliability, which is the probability that the specified vertices are connected by the working edges. To compute the k-terminal reliability components are usually assumed to be statistically independent. In this study the modeling and analysis of the k-terminal reliability are investigated when dependency among components is considered. As the size of the network increases, the number of the joint probability parameter to represent the dependency among components is increasing exponentially. To avoid such a difficulty the structured-event-based-reliability model (SERM) is presented. This model uses the combination of the network topology (physical representation) and reliability block diagram (logical representation). This enables us to represent the dependency among components in a network form. Computational algorithms for the k-terminal reliability in SERM are based on the factoring algorithm Two features of the ractoring algorithm are the reliability preserving reduction and the privoting edge selection strategy. The pivoting edge selction strategy is modified by two different ways to tackle the replicated edges occuring in SERM. Two algorithms are presented according to each modified pivoting strategy and illustrated by numerical example.

  • PDF

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.

Connected Component-Based and Size-Independent Caption Extraction with Neural Networks (신경망을 이용한 자막 크기에 무관한 연결 객체 기반의 자막 추출)

  • Jung, Je-Hee;Yoon, Tae-Bok;Kim, Dong-Moon;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.924-929
    • /
    • 2007
  • Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.

The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation (자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화)

  • Zhang, Chengdong;Kim, Jung Hwan;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling (신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.930-938
    • /
    • 2007
  • Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.