Cho 등의 균일 모션 블러 제거 알고리듬은 영상 내 외곽선 영역을 선명하게 복원하지 못한다는 문제점이 있다. 이러한 문제점을 극복하기 위해 본 논문에서는 한 장의 정지 영상에서 발생하는 블러 (Blur)현상을 블러된 계단형 신호를 뚜렷한 외곽선으로 복원해주는 쇼크 필터 (Shock filter)와 영상에서 특징을 추출하여 학습하는 합성곱 신경망 (Convolutional Neural Network: CNN)을 이용하여 선명한 영상을 복원하고 이 영상으로부터 균일 모션 (Uniform motion) 블러를 측정하여 영상 내 블러 현상을 제거하는 효과적인 알고리듬을 제안하고자 한다. 제안된 알고리듬은 쇼크 필터와 합성곱 신경망을 이용하여 선명한 영상을 복원함으로써 기존 알고리듬의 단점을 개선하였다. 실험 결과를 통해 제안하는 알고리듬이 기존 알고리듬에 비해 객관적 및 주관적인 평가에서 우수한 복원 성능을 나타냄을 확인하였다.
비월주사방식의 TV 방송은 전송대역폭을 효율적으로 사용할 수 있기 때문에 현재 방송표준에서 사용하고 있으며, MPEG-2와 같은 압축표준에서도 이를 지원하도록 되어있다. 본 논문에서는 이러한 비월주사방식을 사용하는 동영상의 화질개선을 위한 후처리기법으로 필드불일치 보정기법과 움직임열화를 제거하는 기법을 제안한다. 필드불일치 보정기법은 에지 분류를 기반으로하는 선형보간기법과 움직임을 추정하여 이를 보상하는 방법에 대해 설명한다. 선형보간을 위한 에지의 분류는 압축표준에서 가장 널리 사용되는 DCT의 계수를 이용함으로써 추가적인 계산과정 없이 단순히 계수의 비교만으로 이루어진다. 또한 움직임을 추정하여 이를 보상하는 방법은 움직임을 기반으로 하는 영상분할 기법을 적용하여 두 필드이 정보를 모두 이용하게 되므로 정보의 이용이라는 측면에서 매우 효율적이다. 동영상의 화질개선을 위한 움직임열화 제거기법은 제안되는 열화모델을 기반으로 공간적응적인 반복적 영상복원기법을 이용하여 화질개선 효과를 얻을 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4060-4079
/
2020
Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.
Blur identification is the first and the most important step of restoring images. Edge region of the image usually conveys important information of blur parameters. In this paper we propose a region-based edge extraction method for estimating point-spread-function (PSF). As a result, the proposed method can detect the starting and the ending points of a step response, and provides the PSF parameters to the restoration process.
본 논문에서, Gaussian noise를 제거할 때 발생하는 over blurring 현상을 감소시키는 network를 구현하였다. 기존 filtering 방식은 원 영상을 blurring하여 noise를 제거함으로써, edge나 corner 같은 high frequency 성분도 함께 지워지는 것을 확인할 수 있다. CNN (Convolutional Neural Network)기반 denoiser의 경우도 사소한 edge, keypoint를 noise로 인식하여 이러한 정보를 잃게 된다. 우리는 CNN을 기반으로 denoising된 high frequency 성분만을 획득하여 기존 denoiser에 추가함으로써 denoising 성능을 유지하면서 over blurring을 완화하는 network 제안한다.
An effective filtering algorithm which can reduce noise and preserve edges for the restoration of an image degraded by additive white Gaussian noise is presented. The algorithm proposed in this paper is an extension of Lee's algorithm modified to use local gradient information as well as local statistics. It does not require image modeling, and removes noise along the orientaiton of edges so that it does not blur the edge.
한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
/
pp.1306-1310
/
2006
We conducted visual perception experiments to determine the perception limits of motion blur based on human visual system at LCD TV's moving pictures. The motion blur can be expressed Blurred Edge Width (BEW). The results showed that the BEW of moving pictures should be below 3.4pixels (visual angle 4.2') at 3H distance in a living room environment.
This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.
차량 전장시스템은 매 순간마다 정확한 인식을 통하여 사용자에게 정확한 경보를 전달해야 한다. 따라서 차량 영상 인식 알고리즘을 적용하기 위하여 빠른 전처리 시스템이 필요하다. 본 논문은 운전자 보조 시스템의 영상 처리를 목적으로 histogram equalization과 편차를 이용한 bilateral Filter를 사용하여 blur 영상을 보정하는 방법에 대해서 제안하였다. 제안한 시스템은 영상 스케일, 평활화, 노이즈 필터, 윤곽선 추출 순으로 총 5단계로 구성되며, bilateral filter의 과 값을 운전자 보조 시스템에서 나타나는 도로의 주행 현상에 적합하게 추출하여 10픽셀 이하의 blur를 기존의 방법들보다 빠르게 처리하였다. 실험 결과는 MATLAB을 사용하여 소요시간 및 PSNR을 구하였으며 기존의 방법과 비교하여 본 논문의 결과가 처리속도가 빠름을 입증하였다.
저궤도 지구관측위성에 탑재되는 전자광학 카메라는 높은 SNR 및 MTF 성능 요구조건을 만족시키기 위하여, TDI 기능이 포함된 CCD 센서를 사용하는 것이 일반적이다. 그러나, CMOS 센서가 가진 다양한 장점을 활용하기 위하여 CMOS 센서에도 TDI 기능이 추가되고 있으며, CMOS 센서의 취약점 중의 하나인 motion blur 문제를 개선하기 위한 다양한 방법들이 제시되고 있다. CMOS 센서에서도 CCD 센서의 multiphased clocking 방법과 유사하게, 하나의 픽셀을 다수의 서브픽셀로 나누어 각각을 별도로 읽어내거나, 픽셀 사이에 인위적인 마스크을 삽입하기도 한다. 또한, 노출시간(integration time)을 라인타임보다 짧게 하여, TDI CMOS 카메라 시스템의 motion blur를 최소화 할 수도 있다. 노출시간을 조절하는 방법을 적용함으로써, 카메라 제어 유닛의 명령을 통하여, 각각의 촬영임무의 목적에 맞도록, SNR 우선 영상 또는 MTF 우선 영상을 선택적으로 획득하는 것이 가능하다. 본 논문에서는 노출시간을 조절하여 motion blur를 최소화 하는 방법에 대해 분석한 결과를 기술하고, MATLAB 시뮬레이션을 통하여 확인된 영상품질(dynamic MTF)의 개선 정도를 정리하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.