• Title/Summary/Keyword: Edge Weight

Search Result 286, Processing Time 0.028 seconds

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Machining Characteristics of Cemented Carbides in Micro Cutting within SEM

  • Heo, Sung-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.35-42
    • /
    • 2004
  • This research describes that the cutting characteristics and tool wear behavior in the micro cutting of three kinds of wear resistant cemented carbides (WC-Co; V40, V50 and V60) using PCD (Poly Crystalline Diamond) and PCBN (Poly crystalline Cubic Boron Nitride) cutting tools by use of the SEM (Scanning Electron Microscope) direct observation method. The purpose of this research is to present reasonable cutting conditions from the viewpoint of high efficient cutting refer to a precise finished surface and tool wear. Summary of the results is as follows: (1) The cutting forces tend to increase as the increase of the weight percentage of WC particles, and the thrust forces was larger than the principal forces in the cutting of WC-Co. These phenomena were different from the ordinary cutting such as cutting of steel or cast iron. (2) The cutting speed hardly influenced the thrust force, because of the frictional force between the cutting tool edge and small WC particles at low cutting speed region such as 2$\mu\textrm{m}$/s. It seemed that the thrust cutting force occurred by the contact between the flank face and work material near the cutting edge. (3) The wear mechanism for PCD tools is abrasion by hard WC particles of the work materials, which leads diamond grain to be detached from the bond. (4) From the SEM direct observation in cutting the WC-Co, it seems that WC particles are broken and come into contact with the tool edge directly. This causes tool wear, resulting in severe tool damage. (5) In the orthogonal micro cutting of WC-Co, the tool wear in the flank face was formed bigger than that in the rake face on orthogonal micro cutting. And the machining surface integrity on the side of the cutting tool with a negative rake angle was better than that with a positive one, as well as burr in the case of using the cutting tool with a negative rake angle was formed very little compared to the that with a positive one.

Study on Recycling of Air filter PET/PP mixed Plastics from Automobiles (자동차(自動車) Air Filter PET/PP 혼합(混合) 폐(廢)플라스틱의 재활용(再活用)에 관(關)한 연구(硏究))

  • Ahn, Tae-Kwang;Kim, Hea-Tae
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • Using the post-consumer waste and edge scrap mixed PET with small amount PP air filter elements of automobiles. It was studied that these mixed waste plastics of the various types of the PET were practicable for the material recycling. Various waste PET/PP plastics were collected, crushed, dried in vacuum, and extruded to recycled PET/PP chips. These chips were mixed with three kinds compatibilizers, EVA, MBS, and recycled PVB of the ratio of $3{\sim}10wt.%$ for the purpose of the compatibility for the post-consumer waste and edge scrap. We investigated mechanical and thermal properties of PET/PP mixtures which were compound with the weight ratio of compatibilizers. Compatibilizer, MBS application was showed the most excellent mechanical properties in the range of the $3{\sim}5wt.%$ EVA application was displayed good impact strength and thermal property in the range of $3{\sim}5wt.%$ Last, recycled PVB application was showed poor mechanical properties in the whole range ratio of the PVB.

Edge-adaptive demosaicking method for complementary color filter array of digital video cameras (디지털 비디오 카메라용 보색 필터를 위한 에지 적응적 색상 보간 방법)

  • Han, Young-Seok;Kang, Hee;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.174-184
    • /
    • 2008
  • Complementary color filter array (CCFA) is widely used in consumer-level digital video cameras, since it not only has high sensitivity and good signal-to-noise ratio in low-light condition but also is compatible with the interlaced scanning used in broadcast systems. However, the full-color images obtained from CCFA suffer from the color artifacts such as false color and zipper effects. These artifacts can be removed with edge-adaptive demosaicking (ECD) approaches which are generally used in rrimary color filter array (PCFA). Unfortunately, the unique array pattern of CCFA makes it difficult that CCFA adopts ECD approaches. Therefore, to apply ECD approaches suitable for CCFA to demosaicking is one of the major issues to reconstruct the full-color images. In this paper, we propose a new ECD algorithm for CCFA. To estimate an edge direction precisely and enhance the quality of the reconstructed image, a function of spatial variances is used as a weight, and new color conversion matrices are presented for considering various edge directions. Experimental results indicate that the proposed algorithm outperforms the conventional method with respect to both objective and subjective criteria.

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images (스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법)

  • Kim, Ho-Young;Lee, Seong-Won
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.902-915
    • /
    • 2011
  • Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.

Contrast Enhancement Based on Weight Mapping Retinex Algorithm (Contrast 향상을 위한 가중치 맵 기반의 Retinex 알고리즘)

  • Lee, Sang-Won;Song, Chang-Young;Cho, Seong-Soo;Kim, Seong-Ihl;Lee, Won-Seok;Kang, June-Gill
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.31-41
    • /
    • 2009
  • The Image sensor of digital still camera has a limited dynamic range. In high dynamic range scenes, a picture often turns out to be underexposed or overexposed. Retinex algorithm based on the theory of the human visual perception is known to be effective contrast enhancement technique. However, it happens the unbalanced contrast enhancement which is the global contrast increased, and the local contrast decreased in the high dynamic range scenes. In this paper, to enhance the both global and local contrast, we propose the weight mapping retinex algorithm. Weight map is composed of the edge and exposure data which are extracted in the each retinex image, and merged with the retinex images in the fusion processing. According to the output picture comparing and numerical analysis, the proposed algorithm gives the better output image with the increased global and local contrast.

Methylmercuric Chloride(MMC) and Reduction of the Fetal Ossification in Fischer-344 Rats during Organogensis (임신중 폭로된 염화메틸수은이 흰쥐태자의 골격형성에 미치는 영향에 대한 연구)

  • 이진헌
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.73-81
    • /
    • 2001
  • The purpose of this study was to determine the adverse effects of methylmercuric chloride(MMC) against the fetal growth and the ossification rate of fetal pectoral and pelvic girdle, stermebrae, ribs and tail in pregnant Fischer 344 rats administered orally on day 7 of gestation. The resulted obtained are as follows. The weight and size of fetus were highly reduced by MMC. The reduction of fetal weight and size were 16. 2%~24.5%(p<0.01), and 34.1%~48.8%(p<0.01), and that of the litter’s weight were 67.0%(p<0.01) and 89.2%(p<0.01) by 20 and 30mg/kg MMC, respectively. Ossification centers were never formed in pectoral and pelvic phalanges and sternebrae, and was reduced as much as 70% in tail by 30mg/kg MMC. And also those were 82.4%~ 91.2%(p<0.01) in ischium, and 52.4~66.7%(p<0.01) in the others(ilium, fenur, tibia, fibula, metatarsals)of pelvic girdle by 30 mg/kg MMC. Ossification of sternebrae was terrible. 5th bone of sternebrae was not ossificated by 20 and 30 mg/kg MMC(p<0.01), and 2nd was also not ossificated by 30 mg/kg MMC(p<0.01).And reduction of ossification rate was 84.8~97.8%(p<0.01) in the others of sternebrae by 30 mg/kg MMC. And then, the reduction of ossification rate was 26.65~49.8%(p<0.01) in fetal ribs by 30 mg/kg MMC, and they were trend to increased as following from center to each edge. In conclusion, it was observed that fetal weight, size, and ossification of each bone were highly significantly reduced by the increased dosage of MMC.

  • PDF

Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment (AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1310-1316
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, the importance of video processing such as object tracking, medical imaging, and object recognition is increasing. In particular, the noise reduction technology used in the preprocessing process demands the ability to effectively remove noise and maintain detailed features as the importance of system images increases. In this paper, we provide a modified weight filter based on pixel matching in an AWGN environment. The proposed algorithm uses a pixel matching method to maintain high-frequency components in which the pixel value of the image changes significantly, detects areas with highly relevant patterns in the peripheral area, and matches pixels required for output calculation. Classify the values. The final output is obtained by calculating the weight according to the similarity and spatial distance between the matching pixels with the center pixel in order to consider the edge component in the filtering process.

Generalized Borůvka's Minimum Spanning Tree Algorithm (일반화된 Borůvka 최소신장트리 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.165-173
    • /
    • 2012
  • Given a connected, weighted, and undirected graph, the Minimum Spanning Tree (MST) should have minimum sum of weights, connected all vertices, and without any cycle taking place. Borůvka Algorithm is firstly suggested as an algorithm to evaluate the MST, but it is not widely used rather than Prim and Kruskal algorithms. Borůvka algorithm selects the Minimum Weight Edge (MWE) from each vertex with distinct weights in $1^{st}$ stage, and selects the MWE from each MSF (Minimum Spanning Forest) in $2^{nd}$ stage. But the cycle check and the number of MSF in $1^{st}$ stage and $2^{nd}$ stage are difficult to implication by computer program even if it is easy to verify visually. This paper suggests the generalized Borůvka Algorithm, This algorithm selects all of the same MWEs for each vertex, then checks the cycle and constructs MSF for ascending sorted MWEs. Kruskal method bring into this process. if the number of MSF greats then 1, this algorithm selects MWE from ascending sorted inter-MSF edges. The generalized Borůvka algorithm is verified its application by being applied to the 7 graphs with the many minimum weights or distinct weight edges for any vertex. As a result, the generalized Borůvka algorithm is less required for cycle verification then the Kruskal algorithm. Therefore, the generalized Borůvka algorithm is more fast to obtain MST then Kruskal algorithm.