• Title/Summary/Keyword: Edge Radiation

Search Result 194, Processing Time 0.032 seconds

A Numerical Model of an Edge-clamped Rectangular Plate Based on a Mode Method to Predict Acoustic Radiation Characteristics (모드법에 의한 클램프 조건 사각평판의 음향방사특성 예측모델)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.374-383
    • /
    • 2011
  • A numerical model based on a mode method coupling beams and a rectangular plate is proposed to estimate radiation characteristics of an edge-clamped rectangular plate. The radiation efficiency and radiation power in the audio frequency range including the critical frequency can be predicted. The proposed model is rather simple and straightforward and gives reliable results comparing to the previous studies. The estimated radiation characteristics are compared to those of the pinned condition plates and also to those based on the formulae proposed by Maidanik. The radiation efficiency of the clamped plate seems a little higher than that of the pinned plate in the frequency range of corner and edge modes. It is explicitly shown that the power as well as efficiency at high frequencies is not influenced by these edge boundary conditions.

Sound Radiation Characteristics of Rectangular Plates with a Guided Edge Condition (모서리의 경계조건이 가이드 조건인 사각 평판의 음향방사 특성 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.876-883
    • /
    • 2009
  • The radiation of sound from a rectangular plate with a guided edge condition is investigated. By taking this particular boundary condition into account, simple analytical forms of the average radiation efficiency and radiation power based on the modal approach can be found, where the cross-modal terms can average out for all possible point excitation locations. Design variables of the plate such as thickness, aspect ratio, and damping that are closely related to the sound radiation are mainly discussed. The radiation power of the guided plate is found to be governed by the piston mode as well as the critical frequency. While both the radiation efficiency and the radiation power seem to be influenced by thickness and a large aspect ratio, damping loss factor seems less important to the radiation power. It is also shown that no clear corner and edge mode regions may be found for the guided case, unlike the pinned.

Jet-Edge Interaction and Sound Radiation in Edgetones (쐐기소리에서 분류-쐐기의 상호작용과 소리의 방사)

  • ;Powell A.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.584-590
    • /
    • 1994
  • A theoretical model has been developed to analyze the jet-edge interaction and the sound radiation. The edge responding to the sinuous impinging jet is regarded as an array of dipoles and their strength is determined by the boundary condition on the edge surface. The surface pressure distribution and the edgeforce are estimated using these dipoles. Then the pressure amplitude and directivity of the sound field is obtained by summing the radiating sounds from the dipole sources. It is found that the effective source is located a little distance downstream from the edge tip. And the directivity of the sound radiation is cardioid pattern near the edge but dipole pattern far from the edge. The theoretical model is confirmed by comparing the theoretical prediction of the edgeforce and sound pressure level with available experimental data.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

Effect of Veneer Thickness on a Far-infrared Radiation Drying Characteristics of Edge-and Flat-Sliced Veneers for Decoration (단판의 두께가 곧은결 및 무늬결 무늬목단판의 원적외선건조 특성에 미치는 영향)

  • 이남호;최준호;황의도
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • This study was carried out to investigate the effect of grain and veneer thickness on drying rate, required energy consumption, and drying defects such as checking, end waving, and burning during a far-infrared radiation drying process of decorative veneers of hard maple and beech. Most of the veneer could be dried from green to in-use moisture content within 30 to 360 seconds. The drying rates were significantly affected by veneer thickness, but there was little difference between edge-and flat-sliced veneers. The formation of checking during drying test was none or very slight. The percentages of the veneers defected by checks were higher in the flat-sliced veneers than in the edge-sliced veneers. The maximum end wavinesses in the flat-sliced veneers were almost 1.6 to 3 times larger than that in the edge-sliced veneers. All veneers were fee from burned marks during drying test.

  • PDF

A Study on the Improvement of Penumbra and Dose Distribution in the Multileaf Collimator Field Edge (다엽콜리매이터(Multileaf Collimator) 조사야의 반음영 및 선량분포 개선에 대한 연구)

  • Kim CW.;Kim HN.;Lim CK.;Ra SK.;Park BS.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.88-93
    • /
    • 1998
  • Multileaf collimator is essential equipment in conformal radiation therapy, however the use is limitted by increase of penumbra width and undulating dose distribution at the field edge. The purpose of this study is to improve the penumbra and dose distribution in the multileaf collimator field edge. Measurement were performed with X-omat V film in solid water phantom using 6MV photon beam from Siemens linear accelerator. All the measurement were made along the central axis of $5{\times}5cm,\;10{\times}10cm$ circular field for constant SSD of 100 cm. To improve the penumbra and dose distribution collimator was rotated by 15 degrees from 0 to 90 degrees (collimator rotation method) and center was shifted to the longitudinal direction by fourth of lead width (center shift method). We compare the penumbra and dose distribution at the field edge to alloy block. Dose distribution and penumbra width at the feild edge of MLC showed undulated dose pattern and increased penumbra compared with alloy block. However, in the collimator rotation method and center shift method we abtained simular results with alloy block. Through the study we expected that clinical use of MLC will be increase.

  • PDF

Modeling of Radiation Beams from Ultrasonic Transducers in a Single Medium (단일 매체에서의 평면 초음파 탐촉자의 방사 음장 모델링 기법)

  • Song, Sung-Jin;Kim, Hak-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2000
  • Modeling of radiation beam from ultrasonic transducers has been investigated extensively, since it is one of the most important, fundamental issues that have great influence on the accuracy of an ultrasonic measurement model. Here, three popular radiation models, namely the Rayleigh-Sommerfeld integral model, the boundary diffraction wave model and the edge element model, are discussed briefly, and the radiation beam fields from ultrasonic transducers with planar, circular and rectangular cross-sections are calculated using these three models. Then, the accuracy and the time-efficiency of these methods are compared based on the calculation results.

  • PDF

Monte Carlo-based identification of electron and proton edges for calibration of miniaturized tissue equivalent proportional counter

  • Mingi Eom;Sukwon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4167-4172
    • /
    • 2023
  • Miniaturized tissue equivalent proportional counters (mini-TEPCs) are proper for radiation dosimetry in medical application because the small size of the dosimeter could prevent pile-up effect under the high intensity of therapeutic beam. However, traditional methods of calibrating mini-TEPCs using internal alpha sources are not feasible due to their small size. In this study, we investigated the use of electron and proton edges on Monte Carlo-generated lineal energy spectra as markers for calibrating a 0.9 mm diameter and length mini-TEPC. Three possible markers for each spectrum were calculated and compared using different simulation tools. Our simulations showed that the electron edge markers were more consistent across different simulation tools than the proton edge markers, which showed greater variation due to differences in the microdosimetric spectra. In most cases, the second marker, yδδ, had the smallest uncertainty. Our findings suggest that the lineal energy spectra from mini-TEPCs can be calibrated using Monte Carlo simulations that closely resemble real-world detector and source geometries.

A Study of Real Time Verification System or Radiation Therapy (방사선치료 위치 실시간 검증시스템에 관한 연구)

  • Kim, Y.J.;Ji, Y.H.;Lee, D.H.;Lee, D.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.164-167
    • /
    • 1997
  • The treatment setup of patients during irradiation is an important aspect in relation to the success of radiotherapy. Imaging with the treatment beam is a widely used method or verification of the radiation field position relative to the target area, prior to or during irradiation. In this paper, Real time digital radiography system was implemented or verification of local error between simulation plan and radiation therapy machine. Portal image can be acquired by CCD camera, image board and pentium PC after therapy Radiation was converted into light by a metal/fluorescent Screen. The resulting image quality is comparable to film, so the imaging system represents a promising alternative to film as a method of verifying patient positioning in radiotherapy. Edge detection and field size measurement were also implemented and detected automatically for verification of treatment position. Field edge was added to the original image or checking the anatomical treatment verification by therapy technicians. By means of therapy efficiency improvement and decrease of Radiation side effects with these techniques, Exact Radiation treatments are expected.

  • PDF

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.