• Title/Summary/Keyword: Edge Network

Search Result 802, Processing Time 0.026 seconds

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.

A Novle Method for Efficient Mobile AR Service in Edge Mesh Network

  • Choi, Seyun;Shim, Woosung;Hong, Sukjun;Kim, Hoijun;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.22-29
    • /
    • 2022
  • Recently, with the development of mobile computing power, mobile-based VR and AR services are being developed. Due to network performance and computing power constraints, VR and AR services using large-capacity 3D content have limitations. A study on an efficient 3D content load method for a mobile device is required. The conventional method downloads all 3D content used for AR services at the same time. In this paper, we propose an active 3D content load according to the user's track. The proposed method is a partitioned 3D object load. Edge servers were installed for each area and connected through the MESH network. Partitioned load the required 3D object in the area referring to the user's location. The location is identified through the edge server information of the connected AP. The performance of the proposed method and the conventional method was compared. As a result of the comparison, the proposed method showed a stable Mobile AR Service. The results of this study, it is expected to contribute to the activation of edge server-based AR mobile services.

Analysis of partial offloading effects according to network load (네트워크 부하에 따른 부분 오프로딩 효과 분석)

  • Baik, Jae-Seok;Nam, Kwang-Woo;Jang, Min-Seok;Lee, Yon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.591-593
    • /
    • 2022
  • This paper proposes a partial offloading system for minimizing application service processing latency in an FEC (Fog/Edge Computing) environment, and it analyzes the offloading effect of the proposed system against local-only and edge-server-only processing based on network load. A partial offloading algorithm based on reconstruction linearization of multi-branch structures is included in the proposed system, as is an optimal collaboration algorithm between mobile devices and edge servers [1,2]. The experiment was conducted by applying layer scheduling to a logical CNN model with a DAG topology. When compared to local or edge-only executions, experimental results show that the proposed system always provides efficient task processing strategies and processing latency.

  • PDF

In-Vehicle Network Technologies (차량 내 네트워크 기술)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.518-521
    • /
    • 2018
  • IVN (in-vehicle network) connects various electronic modules in the vehicles. It requires real-time, low noise, high reliability, and high flexibility. It includes CAN (controller area network), CAN-FD (CAN flexible data rate), FlexRay, LIN (local interconnect network), SENT (single edge nibble transmission), and PSI5 (peripheral sensor interface 5). In this paper, their operation priciples, target applications, and pros and cons are explained.

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

Software-Defined WAN and Exchange for Edge-to-Edge Network Softwarization

  • Kim, Dong-Gyun;Jo, Hyeon-Hun
    • Information and Communications Magazine
    • /
    • v.32 no.7
    • /
    • pp.17-26
    • /
    • 2015
  • 최근 네트워크 기술 동향에 있어서 이른바 핫 이슈 중 하나인 소프트웨어 정의 네트워킹(SDN, Software-Defined Networking)은 바야흐로 데이터센터, 기업, 캠퍼스 등의 근거리 데이터 네트워크(LAN, Local Area Network) 환경을 넘어서 통신망 사업자(캐리어)와 서비스 제공자를 통해 원거리 데이터 네트워크 (WAN, Wide Area Network)로 진화하고 있다. 본고에서는 종단간 SDN 프로덕션 서비스를 위한 소프트웨어 정의 원거리 네트워크(SD-WAN, Software-Defined WAN)의 개요 및 적용 사례를 소개하고, SD-WAN의 핵심 서비스 기술로 인식되고 있는 네트워크 최적화, 가상화, 자동화, SDX(Software-Defined Exchange) 등의 요소 기술과 연구 동향을 알아본다.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

Mobility-Aware Service Migration (MASM) Algorithms for Multi-Access Edge Computing (멀티 액세스 엣지 컴퓨팅을 위한 Mobility-Aware Service Migration (MASM) 알고리즘)

  • Hamzah, Haziq;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • In order to reach Ultra-Reliable Low-Latency communication, one of 5G aims, Multi-access Edge Computing paradigm was born. The idea of this paradigm is to bring cloud computing technologies closer to the network edge. User services are hosted in multiple Edge Clouds, deployed at the edge of the network distributedly, to reduce the service latency. For mobile users, migrating their services to the most proper Edge Clouds for maintaining a Quality of Service is a non-convex problem. The service migration problem becomes more complex in high mobility scenarios. The goal of the study is to observe how user mobility affects the selection of Edge Cloud during a fixed mobility path. Mobility-Aware Service Migration (MASM) is proposed to optimize service migration based on two main parameters: routing cost and service migration cost, during a high mobility scenario. The performance of the proposed algorithm is compared with an existing greedy algorithm.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.