• Title/Summary/Keyword: Edge Network

Search Result 802, Processing Time 0.025 seconds

Game Theory-Based Scheme for Optimizing Energy and Latency in LEO Satellite-Multi-access Edge Computing

  • Ducsun Lim;Dongkyun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • 6G network technology represents the next generation of communications, supporting high-speed connectivity, ultra-low latency, and integration with cutting-edge technologies, such as the Internet of Things (IoT), virtual reality, and autonomous vehicles. These advancements promise to drive transformative changes in digital society. However, as technology progresses, the demand for efficient data transmission and energy management between smart devices and network equipment also intensifies. A significant challenge within 6G networks is the optimization of interactions between satellites and smart devices. This study addresses this issue by introducing a new game theory-based technique aimed at minimizing system-wide energy consumption and latency. The proposed technique reduces the processing load on smart devices and optimizes the offloading decision ratio to effectively utilize the resources of Low-Earth Orbit (LEO) satellites. Simulation results demonstrate that the proposed technique achieves a 30% reduction in energy consumption and a 40% improvement in latency compared to existing methods, thereby significantly enhancing performance.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

Modified Deep Reinforcement Learning Agent for Dynamic Resource Placement in IoT Network Slicing

  • Ros, Seyha;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.17-23
    • /
    • 2022
  • Network slicing is a promising paradigm and significant evolution for adjusting the heterogeneous services based on different requirements by placing dynamic virtual network functions (VNF) forwarding graph (VNFFG) and orchestrating service function chaining (SFC) based on criticalities of Quality of Service (QoS) classes. In system architecture, software-defined networks (SDN), network functions virtualization (NFV), and edge computing are used to provide resourceful data view, configurable virtual resources, and control interfaces for developing the modified deep reinforcement learning agent (MDRL-A). In this paper, task requests, tolerable delays, and required resources are differentiated for input state observations to identify the non-critical/critical classes, since each user equipment can execute different QoS application services. We design intelligent slicing for handing the cross-domain resource with MDRL-A in solving network problems and eliminating resource usage. The agent interacts with controllers and orchestrators to manage the flow rule installation and physical resource allocation in NFV infrastructure (NFVI) with the proposed formulation of completion time and criticality criteria. Simulation is conducted in SDN/NFV environment and capturing the QoS performances between conventional and MDRL-A approaches.

Bridge-edges Mining in Complex Power Optical Cable Network based on Minimum Connected Chain Attenuation Topological Potential

  • Jiang, Wanchang;Liu, Yanhui;Wang, Shengda;Guo, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1030-1050
    • /
    • 2021
  • The edges with "bridge characteristic" play the role of connecting the communication between regions in power optical cable network. To solve the problem of mining edges with "bridge characteristic" in provincial power optical cable network, the complex power optical cable network model is constructed. Firstly, to measure the generated potential energy of all nodes in n-level neighborhood local structure for one edge, the n-level neighborhood local structure topological potential is designed. And the minimum connected chain attenuation is designed to measure the attenuation degree caused by substituted edges. On the basis of that, the minimum connected chain attenuation topological potential based measurement is designed. By using the designed measurement, a bridge-edges mining algorithm is proposed to mine edges with "bridge characteristic". The experiments are conducted on the physical topology of the power optical cable network in Jilin Province. Compared with that of other three typical methods, the network efficiency and connectivity of the proposed method are decreased by 3.58% and 28.79% on average respectively. And the proposed method can not only mine optical cable connection with typical "bridge characteristic" but also can mine optical cables without obvious characteristics of city or voltage, but it have "bridge characteristic" in the topology structure.

Resource Allocation Strategy of Internet of Vehicles Using Reinforcement Learning

  • Xi, Hongqi;Sun, Huijuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.443-456
    • /
    • 2022
  • An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.

A New Method for Classification of Structural Textures

  • Lee, Bongkyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 2004
  • In this paper, we present a new method that combines the characteristics of edge in-formation and second-order neural networks for the classification of structural textures. The edges of a texture are extracted using an edge detection approach. From this edge information, classification features called second-order features are obtained. These features are fed into a second-order neural network for training and subsequent classification. It will be shown that the main disadvantage of using structural methods in texture classifications, namely, the difficulty of the extraction of texels, is overcome by the proposed method.

The design of the DiffServ Edge Router on IXP 1200 Network Processor (IXP1200 네트워크 프로세서를 이용한 Diffserv Edge Router의 설계)

  • 배국동;박우진;정영환;김경혜;안순신
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.638-640
    • /
    • 2003
  • 급변하는 네트워크 서비스에 대한 요구에 신속히 대응하고 새로운 특징에 대한 시스템의 수정과 보완이 용이하도록 고안된 것이 네트워크 프로세서이다. 본 논문은 네트워크 관련 응용에 특화된 인텔의 IXP1200 네트워크 프로세서를 이용하여 Differentiated Service를 위한 간단한 DiffServ Ingress Boundary Node로서의 Edge Router를 설계한다.

  • PDF

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.