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A New Method for Classification of Structural Textures

Bongkyu Lee

Abstract: In this paper, we present a new method that combines the characteristics of edge in-
formation and second-order neural networks for the classification of structural textures. The
edges of a texture are extracted using an edge detection approach. From this edge information,
classification features called second-order features are obtained. These features are fed into a
second-order neural network for training and subsequent classification. It will be shown that the
main disadvantage of using structural methods in texture classifications, namely, the difficulty of
the extraction of texels, is overcome by the proposed method.
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1. INTRODUCTION

In image analysis, texture is broadly classified into
two main categories, statistical and structural [1].
Textures that are random in nature are well suited for
statistical characterization, for example, as realizations
of random fields. They do not have easily identifiable
primitives (e.g., bark, sand, etc.). Structural textures, on
the other hand, are characterized by a set of primitives
(texels) and placement rules. The placement rules de-
fine the spatial relationships between the rexels and
these spatial relationships may be expressed in terms
of adjacency, closet distance or periodicities. The fex-
els themselves may be defined by their gray level,
shape or homogeneity of some local property. Many
real-world textures contain the structural characteristic.
A large number of woven fabrics and commercial
furniture are good examples of purely structural or
semi-deterministic textures. Microscopic images of
electron beam textures in steel surface and human
endothelium [2] also have structural characteristics.
Thus, structural texture classification has many indus-
trial applications, such as automatic fabric inspection,
steel surface testing and electronic catalogues. For
these reasons, structural texture classification is an
important task in pattern recognition applications.

Texture classification approaches can also be or-
ganized into two main categories: statistical and
structural approaches [3]. Statistical approaches con-
sider textures as complicated pictorial patterns on
which sets of statistics can be defined to characterize
these patterns. In the structural methods, the texture is
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considered to be a cellular and an ordered phenome-
non. Hence, the purpose of the first stage of the
analysis is to define the rexel. Since structural meth-
ods involve numerous image pre-processing proce-
dures to extract fexels so that they are time-
consuming, statistical approaches are the more effi-
cient approach for texture matching [4]. Thus, most of
the former methods used statistical approaches re-
gardless of the class of textures. In the classification
of structural textures (Examples can be seen in Fig. 1),
however, structural approaches are superior to statis-
tical methods since the spatial structure is more
strongly emphasized in the structural approach [5].
Liu et al. [6] observed that the MRSAR proposed in
[7] (it belongs to statistical approaches) is incapable
of distinguishing images where structural textures are
involved. This result showed limitations of the statis-
tical methods and the effectiveness of the structural
methods in measuring perceptual similarity.

(a) Textile 1. (b) Textile 2.

Fig. 1. Examples of structural textures.

(c extile 3.

e [ |
(a) Conf. 1. (b) Conf. 2. (c) Conf. 3. (d) Conf. 4.

Fig. 2. Various configurations of a structural texture.
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Fig. 3. Various subsamples of a texture.

Although structural approaches are well suited for
structural textures, not many researchers have devel-
oped texture analysis techniques using structural
methods since it is difficult to find an appropriate
texel in an input texture during the classification. The
difficulty of the extraction of fexels is due to two ma-
jor problems. Since the image textures to be analyzed
generally have texels of different sizes, it is difficult
to automatically determine the size of texel of each
input texture during the recognition. The other is that
it is complicated to define the correct fexel since tex-
tures with the same fexel may have more than one
configuration (Fig. 2). Furthermore, various types of
subimages (Fig. 3) can be extracted in each texture.

In this paper, we present a new method that com-
bines the characteristics of edge informations and
second-order neural networks that achieves a high
classification rate with structural textures. Several
studies [8, 9] have previously shown that using edge
information in the texture features can lead to the
achievement of good classification performance. The
edges of a texture are extracted using an edge detec-
tion approach. From edge informations, classification
features called second-order feature spaces are ob-
tained. These features are fed into a multilayer per-
ceptron (MLP) for training and subsequent classifica-
tion. The network can overcome the difficulty of the
extraction of texels by the second-order features and
the modified recognition step. Moreover, it requires
just one learning sample per texture. Thus, the pro-
posed method has simpler architecture and faster
learning capability compared to the existing methods.
Experiments were performed with structural textures
extracted from the Brodatz texture database [10]. The
results were compared with another neural-based
model proposed in [11]. Although the proposed
method is limited to the classification of periodic tex-
tures, the underlying principles will provide an
important foundation for ongoing researches to
develop more general methods for designing models
to classify textures.

The rest of the paper is organized as follows. In
Section 2, we review various approaches for texture
classification and explain why structural texture clas-
sification is important. In Section 3, we first describe
basic concepts of the second-order neural network.
Then we propose a new generalized second-order

neural network based on the second-order feature
spaces for structural texture classifications. Section 4
presents the architecture of the proposed classifica-
tion scheme. Section 5 presents the experimental re-
sults and Section 6 is the conclusion.

2. TEXTURES AND THEIR CLASSIFICA-
TION - REVIEWS

Texture is observed in the structural patterns of sur-
faces of objects such as wood, grain, grass and cloth.
The term texture generally refers to repetition of basic
texture elements called rexels [11]. A texel contains
several pixels, whose placement could be periodic,
quasi-periodic or random. Natural textures are gener-
ally random, whereas artificial textures are often de-
terministic or periodic. Texture may be coarse, fine,
smooth, granulated, rippled, regular, irregular or lin-
ear.

A large number of approaches for texture feature
extraction and classification have been developed [12,
13]. Methods using Markov Random Field (MRF)
models were proposed [14-17]. Gimel et al. [17] pro-
posed a MRF model with a Gibbs probability distri-
bution for describing particular classes of uniform
stochastic textures. Mao et al. 7] proposed simulta-
neous auto-regressive models to perform texture clas-
sification and segmentation. Haralick [12] and others
[18, 19] used gray tone dependence co-occurrence
matrices to represent texture. Unser et al. [4] and oth-
ers [20-22] proposed methods using adaptive spatial
filters. Gabor filter based methods were also proposed
[23-25]. The use of Gabor filters in extracting tex-
tured image features is motivated by the fact that the
Gabor representation has been shown to be optimal in
the sense of minimizing the joint two-dimensional
uncertainty in space and frequency [24]. Chen et al.
[3] used statistical geometrical features for textures.
Wavelet based feature extraction methods [26, 27],
neural network based filtering methods [11, 28-31]
and methods using Fourier power spectrum [32] were
also proposed for texture classification and segmenta-
tion. Liu ef al. [6] and others [33, 34] used Wold
transform to represent textures. The structural ap-
proaches use the geometrical features of texture
primitives as the texture features. Several edge-based
methods have been proposed [35, 36], these generally
attempt to locate texture edges based on the computa-
tion of a multifeature gradient-like operator. Patel et
al. [37] calculate edged direction using 3 x 3 masks
and then used rank order statistics to produce the tex-
ture features. Hierarchical approaches using pyramid
node linking [38] or applying the split-and-merge
algorithm to the co-occurrence matrix [39] have been
also described.

Since statistical methods characterize the interac-
tion among neighboring image pixels, they are appro-
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priate for modeling random fields with continuous
spectra and random textures. When compared to sta-
tistical approaches, structural approaches have some
advantages where deterministic textures are consid-
ered. Rao ef al. [40] has indicated that the three most
important perceptual dimensions in natural texture
discrimination can be described as “repetitiveness,”
“directionality” and “complexity”. Among them "re-
petitiveness” is the most important dimension of hu-
man perception for structural textures. Since struc-
tural approaches try to find an elementary region of a
texture and use this for classification, they can measure
the preceptual similarity well. To deal with structural
textures efficiently, we propose a new second-order
neural network using second-order feature spaces in
Section 3.

3. SECOND-ORDER FEATURE EXTRAC-
TION SCHEME

3.1 Second-order neural networks - basic concepts
The output of a node i, denoted by y; in a gen-
eral higher-order neural network is given by

¥y, =0O(h)
:G(Zjl/Vijxj +zjzkn/ijkxjxk+ ........ ), (1)

where © is a nonlinear threshold function, # is

the net input of node i, the values of x are the values
of input nodes, and the interconnection matrix ele-
ments W. The second-order neural network uses only
the second-order term in the activation function of a
higher-order neural network. Thus, the output for a
second-order network is given by

y; =0Oh) = @(Z,‘ka,jkxjxk) . (2)

The inputs are first combined in pairs and then output
is determined from a weighted sum of these products.
Fig. 4 illustrates the architecture of a strictly second-
order neural network. Giles et al. [41] showed that the
invariances achieved using this network depend on
the constraints placed on the weights.

The most severe limitation of second-order neural
networks is that the number of input nodes required

for an mx n image is 0((mn)2). This makes imple-

mentation difficult. Spirkovska et al. [42] solved this
problem using coarse coding, which involves the use
of overlaying fields of coarser pixels in order to rep-
resent smaller pixels.

There have been other approaches based on the in-
variant features for unraveling the problem. Schmidt ez
al. [43] showed that the constraints placed on the
weights in a second-order network can be implemented

Fig. 4. A strictly second-order neural network.
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Fig. 5. A second-order neural network implemented
using MLP and SOP.

using the summations of products of each pair of in-
put pixels. This summation of the product at given
relative positions or prescribed positions is called
SOP (Summation of Products). They concluded
that a second-order neural network to a specific de-
formation can be considered as a standard MLP using
second-order features that are invariant to a deforma-
tion. Fig. 5 shows a second-order neural network that
was implemented using MLP and second-order fea-
tures. Using this scheme, Lee et al. [44] and Kwon et
al. [45] proposed second-order neural networks in-
variant to types B and C in Fig. 6, which have
O(mn) input nodes.

In the following, we will show the weight con-
straint for the invariance to all four types of wrap-
translations and implement the weight constraint us-
ing generalized translation invariant second-order
features.

3.2 Wrap-translation invariant second-order features
We now describe how to extract generalized sec-
ond-order features. We first consider a one-
dimensional vector X of size » as an input. To get in-
variance for the translating with p positions, we
should update simultaneously each weight that corre-

sponds to a pair of elements x ;oand xp (J<k) of

X according to (3) when we perform the learning.
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A. original pattem  B. translated pattern
C. wrap—translated  D. wrap—translated
in the row direction in the column direction

F. 1-D feature extraction

distance window
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G. 2-D feature extraction
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Fig. 6. Translation invariances in a second-order neural network.

Algorithm: Extract-feature

1: for each position (jz,jy) in an image B do
2 for i+~ 0tom—1do

3: forl, « 0ton—1do

4: if (I2,1y) is not (0,0) then

5: ky — (g +1z) mod m;

6: ky + (Jy + ) mod n;

7 Second(iz,1,) + Second(ly,1,) + B(js,4y) x Blks, ky);
8: fi

9: od

10: od

11: od

Fig. 7. The algorithm for extracting second-order
features.

Wik = Wi j-pyi-py = Witj-p-pn) @)

In the (3), we can define two types of distances be-
tween two positions j and k. The inner distance (k-j)

is defined by W, ;_,yx_ ) - The outer distance (n+j-
k) is defined by W, k- p+ny (See Fig. 6(F)) In

order to compute the wrap-translated second-order
feature easily, we use the notion of distance windows.
That is, we consider inner and outer distances at the
same time in a distance window. We compute second-
order features of a one-dimensional input vector as
follows. We consider another copy of X as shown in
Fig. 6(F), and then slide the distance window DW of
size n on the concatenation of two copies of X. If DWW
is aligned at position j in X, we compute the inner and
outer distances between two elements x; and x;,

J
forall/(1</<n).
Now, we consider a two-dimensional image B of

size mx n as an input. In this case, we extend the no-
tion of distance windows to two dimensions. Since
we allow all kinds of wrap-translated patterns in this
paper, we consider four copies of B to compute sec-
ond-order features as shown in Fig. 6(G). Fig. 7
shows the algorithm FExtract-feature that computes
second-order features of input image B of size mxn.
We use a two-dimensional array Second of size mx n
to save second-order features. At line 1, we align the
distance window at position (j,,j,)in B. For all

distances (/,,/,) except the zero distance on the

distance window, we compute the product of two pix-
els B(j.j,) and B(k,,k,)=B((j, +[) mod m,

(Jy +ly) mod #), and then save it into Second (lx,ly)

at line 7. Hence, we can correctly compute the sec-
ond-order features of image B after performing the
algorithm.

An example of computing an outer distance between
the position (4,4) and the position (3,/) in B is shown
in Figure 6-G. When the distance window is aligned
at position (4,4) in B, j, =4 and j, = 4, the algo-

rithm starts the computation at line 2 with /. =0
and ly =0. After some iterations, the algorithm sets
(ly,1,) to (3,1). Then the algorithm computes the
(kx,ky) at lines 5, 6 and sets it to (3,/). This means

that the outer distance between B(4,4) and B(3,1) is
(3,1), 3 in the row direction and 1 in the column di-
rection. Thus, the algorithm saves the product of
B(4,4) and B(3, 1) into Second (3,1).
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Fig. 8. Block diagram of the proposed network.
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Fig. 9. Input vectors for three different sized images.

4. THE ARCHITECTURE OF THE PRO-
POSED MODEL

The proposed classification scheme is comprised of
a structure of edge extraction and a second-order neu-
ral network. First, an edge map of the size mx  of an
input image is generated, where mx n is the dimen-
sionality of an input image. Then the second-order
neural network receives the edge map from the edge
extraction stage and extracts mx n dimensional fea-
ture spaces, which are called second-order feature
spaces in this paper. The transformed feature vectors
are fed into the MLP for classification. Fig. 8 illus-

trates the block diagram of the proposed scheme.

The MLP has two consecutive phases, training phase
and recognition phase. In the training phase, two dif-
ferent strategies were adopted in contrast to the tradi-
tional MLP training. The number of input nodes was
defined by the dimension of the largest texel, since
the MLP may receive texels with various sizes. If
three sample rexels with 3x 3, 5x 5 and 3 x 5 sizes are
considered, then the MLP has 25 (5x 5) input nodes.
In order to apply the network to smaller texels, out-
sized vector components are filled with zero. Fig. 9
shows the actual input vectors when three different
sizes are applied. The other is that all pairs (m,n) of
sample texels are recorded in the internal table of the
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Algorithm: Recognition
. for each entry (m,n) in the internal table do
extract features from m X a pixels from an arbitrary position of a test image
select one node with maximum output from all nodes
save the number of node, the window size and the value of the node

: for all selected node ¢ do

: final result « maz (output(i))
: od
: end

1
2
3
4
5 od
6:
7
8
9

Fig. 10. The algorithm for the recognition phase.

network, where m is the row size of a fexel and » is
the column size. This record will be used to solve the
size variance of texels in the recognition phase. The
contents of the table can be shown in the right side of
Fig. 8 once texels of sizes 10x 10, 15x 10 and 30x 30
are trained.

The recognition phase of the trained network was
modified compared to the traditional recognition
phase of the neural network. Using each entry of the
internal table, the output of the network is computed
with second-order features from mx n pixels from a
random position of a test image. Then the node with
the maximum value is selected for the recognition
result for each entry. If (10,10), (15,10) and (30,30)
are the current entries of the internal table, three
nodes are selected for all entries. Each selected node
represents the result for each window size. From all
the selected nodes, the node with the maximum value
is considered as the final recognition result of a test
image. Fig. 10 shows the algorithm Recognition.

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

5.1 Preparation

The performance of the proposed scheme was ana-
lyzed using a variety of structural textures, including
the Brodatz photo album [10]. Twenty deterministic
textures of size 128 x 128 (Fig. 11) were used for the
experiments. These images were categorized into four
sets according to the size of fexel, which are 15x 15,
15% 20, 20x 20 and 30x 30. For the training of the
network, rexels within images were extracted manu-
ally and applied to the network. The MLP adapted its
weights according to the learning rule (backpropaga-
tion) and recorded the size of the applied texel. Since
the proposed network is a second-order neural net-
work, the network needs to be trained on just one
texel of each texture, not on numerous distorted views.
Such generalization has been demonstrated in numer-
ous simulations [42]. In the recognition phase, the
trained network extracted a pattern from a random
position of each texture and classified it using the
algorithm Recognition. This recognition test was

performed 20 times for one image. Thus, the total
number of recognition tests was 400 (20 times per
texture).

The performance of the proposed scheme was
compared with the model proposed in [11], which
belongs to the statistical approach. This model used a
set of Gabor filters for extracting texture features and
a structure that combined the characteristics of SOM
(Self Organizing Map) and first-order MLP for classi-
fications. It was trained using features from 400
(20 x 20) pixels from the center of each texture. Then,
the classifications were performed using the identical
method used in the proposed system. The comparison
between two systems will show the superiority of the
proposed system to statistical systems in the classifi-
cation of deterministic textures.

5.2. Simulation and results

The implementation details of the second-order
network are listed in Table 1. Since the size of the
largest fexel in the data set was 30x 30, the number of
input nodes is 900 (30x 30). The number of output
nodes represents the number of image categories.

The number of hidden nodes was determined as
follows. We implemented several networks having
different numbers of hidden nodes. Then, we chose
the number of hidden nodes having the best learning
capability. The criterion was the standard deviation
std. of PSS (Pattern Square Sum error: sum of
squared errors of output nodes for each pattern) val-
ues. Table 2 shows std. of PSS for each network. In
the Table, 10 hidden nodes presented the least value.
Thus, we chose 10 hidden nodes to implement the
network.

e
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Fig. 11. Images used in the simulations.
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Table 1. Configurations of the second-order neural

network.
Parameters Values
# of input nodes 900
# of hidden nodes 10
# of output nodes 20
Learning rate 0.26
Activation  func- Sigmoid
tion (y;=1/(1+e ™)

Table 2. The comparison of learning capabilities ac-
cording to the hidden nodes.

# of hidden 4 6 8 10

nodes

Std. of PSS 0.309 | 0.219 | 0.160 | 0.092

# of hidden 14 20 30
nodes
Std. of PSS 0.133 | 0.226 | 0.275

Table 3. The filter used in the compared system.

Component name Gabor Filter
Orientation 0, 45, 90, 135 degrees
Bandwidths 6.25
Frequencies 257,572,107 pix-

els/cycle

Table 4. Network Specifications of the compared sys-

tem.
Network Type SOM MLP
# of input nodes 400 25
# of hidden nodes 0 4 (Randomly se-

lected)

# of output nodes | 25(5x5) 20
Learning Kohonen | Backpropagation
method Rule

Table 3 and Table 4 show the implementation de-
tails of the compared model for experiments. We used
12 Gabor filters, having single bandwidth, three fre-
quencies and four orientations, constituting a 12-
dimensional feature vector representing each pixel in
the image.

The simulation results are listed in Table 5. Both of
the systems failed to achieve 100% accuracy in the
experiments. However, the proposed system produced

superior recognition results than the compared system.

Since it cannot be predicted which type of translation
has occurred, the first-order MLP required additional
training patterns [41-43], while the second-order MLLP
using second-order feature spaces did not require more
than one pattern. We also observed that errors can be
eliminated by some parameters of the edge detection.
Various edge images can be obtained by changing
three parameters of the edge detection algorithm.

Table 5. Recognition results of the experiments.

Pattern id T | T2 | T3 | T4
The proposed 20 [ 20 | 19 | 20

(# of correct recognitions)
The compared 151 14 | 15} 13

(# of correct recognitions)

T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12
20 19 | 20 | 20 19 | 20 | 20 19
16 10 12 17 19 8 20 18

T13 | T14 | T15 | T16 | T17 | T18 | T19 | T20
20 | 20 | 20 | 20 | 17 | 20 | 20 | 18
0 7 16 | 15 18 16 6 16

The used values for the three parameters were seen in
Fig. 8.

From the evaluation results, it can be seen that the
proposed method has good characteristics for deter-
ministic texture classification compared to the exist-
ing models. These characteristics are due to capabili-
ties of second-order feature spaces.

6. CONCLUSION

In this paper we have proposed a new two-stage
model for the classification of deterministic textures.
The model used second-order feature spaces of the
edge map of each rexel for feature extraction. The
results were achieved by a second-order neural net-
work trained by the backpropagation algorithm. The
evaluation of the model with a set of deterministic
textures was performed and compared to another neu-
ral-based method proposed in [11]. As a result, our
method showed better classification results than the
compared model.

It was found that second-order feature spaces
solved the basic problem occurring in the deterministic
texture recognition, the translation variance of texel.
Moreover, modified learning and recognition phases
solved the size variation of fexels. It can also be im-
plemented more easily than the existing methods be-
cause of its simplicity. Finally, the proposed model is
size limited since the dimension of second-order fea-
ture spaces is also of the size mx n for an mx n input
image.

Further research will be conducted for recognizing
textures consisting of more than one rexel. Researches
for classification of deterministic textures with noise
distortions will be also conducted.
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