• Title/Summary/Keyword: Edge Caching

Search Result 24, Processing Time 0.022 seconds

Self-adaptive Content Service Networks (자치적응성 컨텐츠 서비스 네트워크)

  • Hong Sung-June;Lee Yongsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • This paper describes the self-adaptive Content Service Network (CSN) on Application Level Active Network (ALAN). Web caching technology comprises Content Delivery Network (CDN) for content distribution as well as Content Service Network (CSN) for service distribution. The IETF working group on Open Pluggalble Edge Service (OPES) is the works closely related to CSN. But it can be expected that the self-adaptation in ubiquitous computing environment will be deployed. The existing content service on CSN lacks in considering self-adaptation. This results in inability of existing network to support the additional services. Therefore, in order to address the limitations of the existing networks, this paper suggests Self-adaptive Content Service Network (CSN) using the GME and the extended ALAN to insert intelligence into the existing network.

  • PDF

SD-ICN: Toward Wide Area Deployable Software Defined Information Centric Networking

  • Xing, Changyou;Ding, Ke;Hu, Chao;Chen, Ming;Xu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2267-2285
    • /
    • 2016
  • Information Centric Networking that uses content name instead of IP address as routing identifier can handle challenges such as traffic explosion and user mobility, but it also suffers from scalability and incompatibility problems. In this paper by combining the concept of software defined networking and Internet end to end arguments, we propose a wide area deployable software defined information centric networking service model named SD-ICN. SD-ICN employs a dual space structure that separates edge service network and core transmission network. The enhanced SDN techniques are used in edge service network in order to implement intelligent data routing and caching, while traditional IP technique is reserved in core transmission network so as to provide wide area high speed data transmission. Besides, a distributed name resolution system based on the cooperation of different controllers is also presented. The prototype experiments in our campus network show that SD-ICN can be deployed in a scalable and incremental way with no modification of the core network, and can support typical communication modes such as multicast, mobility, multihoming, load balancing, and multipath data transmission effectively.

Personalized Service Recommendation for Mobile Edge Computing Environment (모바일 엣지 컴퓨팅 환경에서의 개인화 서비스 추천)

  • Yim, Jong-choul;Kim, Sang-ha;Keum, Chang-sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1009-1019
    • /
    • 2017
  • Mobile Edge Computing(MEC) is a emerging technology to cope with mobile traffic explosion and to provide a variety of services having specific requirements by means of running some functions at mobile edge nodes directly. For instance, caching function can be executed in order to offload mobile traffics, and safety services using real time video analytics can be delivered to users. So far, a myriad of methods and architectures for personalized service recommendation have been proposed, but there is no study on the subject which takes unique characteristics of mobile edge computing into account. To provide personalized services, acquiring users' context is of great significance. If the conventional personalized service model, which is server-side oriented, is applied to the mobile edge computing scheme, it may cause context isolation and privacy issues more severely. There are some advantages at mobile edge node with respect to context acquisition. Another notable characteristic at MEC scheme is that interaction between users and applications is very dynamic due to temporal relation. This paper proposes the local service recommendation platform architecture which encompasses these characteristics, and also discusses the personalized service recommendation mechanism to be able to mitigate context isolation problem and privacy issues.

Overview of Motion-to-Photon Latency Reduction for Mitigating VR Sickness

  • Ryu, Yeongil;Ryu, Eun-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2531-2546
    • /
    • 2021
  • For several years, virtual reality (VR) and augmented reality (AR) technologies have been improving. However, some hurdles remain that slow down the distribution of VR and AR devices, such as head-mounted display (HMD), and related consumer content. One issue is VR motion sickness, which has been experienced by users using 360 degree VR content via HMD. This paper discusses the related international standardization work that classifies the factors causing VR sickness, and proposes the process for VR sickness level evaluation. Among the factors causing VR sickness, many research institutes regard minimizing MTP (Motion-to-Photon) latency as the key enabler to mitigate VR sickness. Thus, this paper introduces research trends of MTP latency measurement and MTP latency mitigation. This paper categorizes the research on MTP latency measurement into 2 categories of hardware-based approach and software code-level approach. The 2 approaches have different pros and cons depending on use-case, purpose, and architecture of each multimedia system. The pros and cons are addressed in this paper. Additionally, the research on mitigating MTP latency with diverse strategies such as proactive computing, caching, and edge server technology is explained, and compared to conventional technologies, shows improved performance.