• 제목/요약/키워드: Edge AI

검색결과 133건 처리시간 0.025초

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction

  • Chuluunbaatar Otgonbaatar;Jae-Kyun Ryu;Jaemin Shin;Ji Young Woo;Jung Wook Seo;Hackjoon Shim;Dae Hyun Hwang
    • Korean Journal of Radiology
    • /
    • 제23권11호
    • /
    • pp.1044-1054
    • /
    • 2022
  • Objective: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. Materials and Methods: CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. Results: DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. Conclusion: DLR reconstruction provided better images than FBP and hybrid IR reconstruction.

일반인에서의 근에너지 기법 시술 전과 후의 척추기립근 경근전도 변화 (The Clinical Study of Muscle Energy Techniques in Elector Spinae Muscle through Meridian Electromyography on Subjects)

  • 최진서;안재민;박동수;정수현;김순중
    • 척추신경추나의학회지
    • /
    • 제7권2호
    • /
    • pp.101-108
    • /
    • 2012
  • Objectives : To evaluate the clinical utility of Muscle Energy Techniques(MET) in Elector Spinae Muscle on subjects. Methods : We compared electrical activity between a before MET and a after MET in Elector Spinae Muscle on subjects in same group(n=26) in dynamic flexion-reextension state during five seconds. We analyzed amplitudes and areas of electrical activity and Asymmetry Index(AI) and Median Edge Frequency(MEF). Results : 1. After MET in Elector Spinae Muscle on subjects were lower electrical activity than before MET in Elector Spinae Muscle on subjects but it is not a pointless observation(p<0.05). 2. AI of the after MET in Elector Spinae Muscle on subjects significantly decreased compared with before MET in Elector Spinae Muscle on subjects(p<0.05). 3. MEF of the after MET in Elector Spinae Muscle on subjects decreased compared with before MET in Elector Spinae Muscle on subjects but it is not a pointless observation(p<0.05). Conclusions : According to above results, there is clinical effect MET on subjects.

  • PDF

다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석 (Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model)

  • 우창우;이종연
    • 한국융합학회논문지
    • /
    • 제11권9호
    • /
    • pp.21-29
    • /
    • 2020
  • 최근 디지털 사회의 도래로 다양한 데이터가 폭발적으로 증가하고, 그중 문헌 내 주제어를 도출하는 토픽 모델링에 관한 연구가 활발히 진행되고 있다. 본 논문의 연구목표는 토픽 모델링 방법 중 하나인 DTM(Dynamic Topic Model) 모델을 적용해 D.N.A.(Data, Network, A.I) 분야에 대한 연구동향을 탐색하는데 있다. 실험 데이터는 최근 6년간(2015~2020) ICT(Information and Communication Technology) 분야 중 기술대분류가 SW·AI에 해당하는 연구과제 1,519개 사업에 대해 DTM 모델을 적용하였다. 실험결과로, D.N.A. 분야의 기술 키워드 Big data, Cloud, Artificial Intelligence와 확장된 의미의 기술 키워드 Unstructured, Edge Computing, Learning, Recognition 등이 매년 연구에 표출되었으며, 해당 키워드 들이 특정 연구과제에 종속되지 않고 다른 연구과제에서도 포괄적으로 연구되고 있음을 확인하였다. 끝으로 본 논문의 연구결과는 향후 D.N.A. 분야에 대한 정책기획·과제기획 등 연구개발 기획 과정과 기업의 기술 확보전략·마케팅 전략 등 다양한 곳에 활용될 수 있을 것으로 기대한다.

마이크로스트립 패치 안테나를 이용한 습도 센서 (Humidity Sensor Using Microstrip Patch Antenna)

  • 여준호
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.71-76
    • /
    • 2023
  • 본 논문에서는 마이크로스트립 패치 안테나와 폴리비닐알코올(PVA; polyvinyl alcohol)을 이용한 습도 센서에 대하여 연구하였다. PVA는 습도에 따라 유전율이 변하는 고분자 물질이며, 전계 변화에 민감한 마이크로스트립 패치 안테나의 방사면에 직사각형 슬롯을 추가하여 비유전율 변화에 대한 감도를 높였다. 0.76 mm 두께의 RF-35 기판에 제작된 안테나의 직사각형 슬롯이 추가된 방사면 주변을 PVA로 얇게 코팅한 후, 온습도 챔버를 사용하여 25도에서 상대습도를 40%에서 80%까지 10% 간격으로 증가시켜 안테나 입력 반사 계수의 공진 주파수와 크기의 변화를 측정하였다. 실험 결과, 상대습도가 40%에서 80%로 증가할 때 안테나 입력 반사 계수의 공진 주파수는 2.447 GHz에서 2.418 GHz로 감소하였고, 입력 반사 계수의 크기는 -7.112 dB에서 -3.428 dB로 증가하였다.

지능형 교량 안전성 예측 엣지 시스템 (Intelligent Bridge Safety Prediction Edge System)

  • 박진효;이태진;홍용근;윤주상
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권12호
    • /
    • pp.357-362
    • /
    • 2023
  • 교량은 중요한 교통 인프라지만 다양한 환경적 요인과 지속적인 교통 부하로 손상 및 균열을 겪게 되며, 이러한 요인들은 교량의 노후화를 가속화시킨다. 현재 건설한 지 오래된 교량이 많아지면서 안전성을 보장하고 노후화를 진단하기 위한 시스템의 필요성이 대두되고 있다. 이미 교량에서는 실시간 또는 주기적으로 교량의 상태를 모니터링하기 위해 구조물 건전도 모니터링(SHM) 기술이 활용되고 있다. 이 기술과 함께 인공지능과 사물인터넷 기술을 활용한 지능형 교량 모니터링 기술 개발이 진행 중이다. 본 논문에서는 노후화된 교량의 유지관리를 위해 고속 푸리에 변환과 차원 축소 알고리즘을 활용한 교량 안전성을 예측 엣지 시스템 기법을 연구한다. 특히, 기존 연구와는 다르게 실제 교량에서 수집된 센서 데이터를 이용하여 데이터셋을 형성하고 교량의 안전성을 확인할 수 있는지 알아본다.

2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성 (Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment)

  • 최형진;이준희
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.626-637
    • /
    • 1994
  • Ti-6Ai-4V 합금의 미세조직을 용체화처리온도 및 냉각속도만의 변화로서 Widmanstatten 조직과 이중조직을 얻은 후 이들 미세조직과 인장성질고의 비교. 검토를 통해서 최적 열처리 방안을 설정하고자 하였다. 그 결과 Widmanstatten 조직에 있어서는 열처리온도나 냉각속도에 따라 복잡하고 무질서한 dege형상의 $\alpha$상 및 등축화된 $\alpha$상으로변화시킬 수 있었으며, $\alpha$+$\beta$ 영역에서 2중 용체화 처리의 경우 1차 및 2차 용체화처리 온도가 낮을수록 aspect비는 작아짐을 알 수 있었다. 인장성질에 있어서 Widmanstatten 조직은 이중조직에 비해 강도는 감소하고 연성성질 또한 크게 감소하였으며, 파단양상 Widmanstatten 조직의 경우 준벽개와 dimple형 파단양상이 함께 나타나는 반면 이중조직은 연성파괴를 나타내었다. 또한 이중조직의 파단면을 인장축에 수직인 내부균열영역과 45˚ 정도의 전단각을 갖는 shear lip영역으로 나누어 관찰할 수 있었다.

  • PDF

IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법 (IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach)

  • 칸 탈하 애흐마드;아팍 모하메드;기자르 아바쓰;송왕철
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.29-41
    • /
    • 2020
  • 네트워크는 빠르게 성장하여 다중 도메인 복잡성을 유발하고 있다. 네트워크 트래픽 및 서비스의 다양성, 다양성 및 동적 특성은 향상된 오케스트레이션 및 관리 접근 방식을 필요로한다. 많은 표준 오케스트레이터와 네트워크 운영자가 E2E 슬라이스 오케스트레이션을 처리하기 위한 복잡성이 증가하고 있다. 또한 액세스, 에지, 전송 및 코어 네트워크를 포함하여 E2E 슬라이스 오케스트레이션과 관련된 여러 도메인이 각각 특정 문제를 가지고 있다. 따라서 멀티 도메인, 멀티 플랫폼 및 멀티 오퍼레이터 기반 네트워킹 환경을 수동으로 처리하려면 특정 전문가가 필요하며 이 접근 방식을 사용하면 런타임에 네트워크의 동적 변경을 처리할 수 없다 또한 이러한 복잡성을 처리하기위한 수동 접근 방식은 항상 오류가 발생하기 쉽고 지루한 일이다. 따라서 본 연구에서는 의도 기반 접근법을 사용하여 E2E 슬라이스 오케스트레이션을 처리하기 위한 자동화되고 추상화된 솔루션을 제안한다. 운영자로부터 도메인을 추상화하고 높은 수준의 의도 형태로 오케스트레이션 의도를 제공 할 수 있다. 또한 조정 된 리소스를 적극적으로 모니터링하고 머신 러닝을 사용하여 현재 모니터링 통계를 기반으로 시스템 상태 업데이트를 위한 향후 리소스 활용도를 예측한다. Closed-loop 자동화 E2E 네트워크 오케스트레이션 및 관리 시스템이 생성된다.

비정형 데이터셋 표준포맷 기반 국방 비정형 데이터셋 표준화 방안 제안 (Proposal of Standardization Plan for Defense Unstructured Datasets based on Unstructured Dataset Standard Format)

  • 황윤영;손지성
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.189-198
    • /
    • 2024
  • 민간에서뿐 아니라 국방분야에서도 인공지능은 국방의 발전을 위해 꼭 도입되어야 하는 첨단기술로 받아들여지고 있으며, 특히 국방과학기술혁신의 핵심 과제로 인공지능이 선정되고, 데이터의 중요성이 확대되고 있다. 국방은 폐쇄적인 데이터 정책에서 데이터 공유·활성화로 방향을 전환하고 있으며, 국방의 발전을 위해 필요한 양질의 데이터를 확보하기 위한 노력을 기울이고 있다. 특히 AI·빅데이터의 고유한 특성이 반영될 수 있도록 관련 절차 개선 및 대량·양질의 데이터가 충분히 확보된 상태에서 연구개발이 시작될 수 있도록 데이터 확보를 위한 사업예산과 제도 검토를 추진하고 있다. 그러나 국방 차원의 정형데이터 및 비정형 데이터의 표준화·품질 기준 마련이 필요한 상황이나 지금까지 국방은 정형데이터의 표준화·품질 기준을 제안하고 있는 수준으로 이에 대한 보완이 필요하다. 본 논문에서는 국방 인공지능에서 가장 필요한 국방 비정형 데이터셋을 위한 비정형 데이터셋 표준포맷을 제안하고, 이를 바탕으로 국방 비정형 데이터셋 표준화 방안을 제안한다.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR AN AUTOMOBILE PLASTIC PART INSPECTION

  • ANDRES N.S.;MARIMUTHU R.P.;EOM Y.K.;JANG B.C.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1131-1135
    • /
    • 2005
  • Since human is vulnerable to emotional, physical and environmental distractions, most human inspectors cannot sustain a consistent 8-hour inspection in a day specifically for small components like door locking levers. As an alternative for human inspection, presented in this study is the development of a machine vision inspection system (MVIS) purposely for door locking levers. Comprises the development is the structure of the MVIS components, designed to meet the demands, features and specifications of door locking lever manufacturing companies in increasing their production throughput upon keeping the quality assured. This computer-based MVIS is designed to perform quality measures of detecting missing portions and defects like burr on every door locking lever. NI Vision Builder software for Automatic Inspection (AI) is found to be the optimum solution in configuring the needed quality measures. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of gauging, detecting missing portion and checking alignment. Furthermore, this study exemplifies the incorporation of the optimized NI Builder inspection environment to the pre-inspection and post-inspection subsystems.

  • PDF