• Title/Summary/Keyword: Eddy-covariance

Search Result 107, Processing Time 0.037 seconds

A Review on the Carbon Exchange Estimation in Fruit Orchard (과수 재배지의 탄소 수지 평가 연구 동향)

  • Choi, Eun Jung;Suh, Sang Uk;Jeong, Hyun Cheol;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Agro-ecosystem plays an important role in the mitigation of atmospheric $CO_2$ concentration through photosynthesis and soil carbon fixation. The perennial crops have capacity of carbon accumulation because they have lived for years in the same position. Carbon dioxide fixation occurs in the fruit orchard by photosynthesis and soil carbon sequestration. The objectives of this review are to introduce the fruit orchard as a carbon dioxide sink and to summarize the methods that measure $CO_2$ flux in the orchard. There are three difference methods (chamber, biomass, and eddy covariance method) to measure $CO_2$ exchanges on sites. However, there is no standard method suitable for fruit cultivation condition in Korea. Thus the standard method have to be developed in order to exactly estimate the carbon accumulation. In foreign studies, the carbon assessments were conducted in apple, peach, olive, grape orchard and so on. On the other hand the estimation of $CO_2$ exchange was carried out for apple and mandarine orchard in Korea. According to these results, fruit orchard is a $CO_2$ sink even though amount of carbon accumulation is smaller than the forest. To introduce certainly fruit orchard as greenhouse gas sink, long-term monitoring and further study have to be conducted under each planting condition.

Analysis of the eddy covariance method data by gas analyzer types (가스분석기 측정 형태별 에디공분산 자료 분석)

  • Lee, Jung Hoon;Kim, Ki Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.201-201
    • /
    • 2020
  • 수문 순환 및 물 수지에 관한 연구는 강수량, 지표유출량, 지하수, 토양수분 및 증발산량에 대한 정량화가 이루어질 때 실제적으로 규명될 수 있다. 그러나, 수문 순환 및 물수지 평가에 중요한 부분을 차지하는 증발산량의 경우 관측값보다 단순한 가정이나 경험식에 의한 추정값을 사용하고 있어 그 자료의 신뢰성에 대해서도 꾸준히 문제가 제기되어 왔다. 따라서, 수문 순환 및 물수지의 정량적인 분석을 위해서는 수문 순환 과정에서 상당부분을 차지하는 증발산량의 측정(실측)이 필요한 실정이다. 본 연구는 환경부의 기초수문자료 구축사업의 일환으로 수행되고 있으며, 에디공분산 기술을 사용하여 증발산량을 직접 관측하고 있다. 에디공분산 방법으로 증발산량을 측정하기 위해서 필요한 장비 중 수증기 농도를 측정하는 장비(개회로 기체분석기, 폐회로 기체분석기<수증기 농도를 측정하는 부분의 개폐여부에 따른 장비 구분>)에 대해 비교 측정을 수행하였으며, 관측 지점은 인위적인 관개가 이루어지고 있는 논경지(청미천 관측소)에서 수행하였다. 측정 자료에 대한 검토는 측정 장비에 따른 자료의 특성을 비교하기 위해 약 13,000개(9개월, 30분 간격) 자료를 활용하여 분석을 수행하였다. 그 결과 두 측정장비 모두 농도 변화에 따른 경향성은 유사하게 나타났으나, 측정 자료의 취득률에서는 차이(약 20%)를 보이는데, 이는 개회로 측정 장비의 경우 강우 및 안개 등의 기상상황에 따라 영향을 받기 때문으로 판단된다. 에디공분산 방법을 이용한 증발산량은 여러 기상자료를 이용하여 보정을 수행하기 때문에 측정 장비의 취득률로 인한 증발산량 산정에는 문제가 되지 않을 것으로 판단된다. 단 높은 관측률 및 측정 자료를 위해서는 폐회로 측정 장비를 이용하는 것이 유리할 것으로 판단된다.

  • PDF

Water balance change at a transiting subtropical forest in Jeju Island

  • Kim, JiHyun;Jo, Kyungwoo;Kim, Jeongbin;Hong, Jinkyu;Jo, Sungsoo;Chun, Jung Hwa;Park, Chanwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.99-99
    • /
    • 2022
  • Jeju island has a humid subtropical climate and this climate zone is expected to migrate northward toward the main land, Korea Peninsula, as temperature increases are accelerated. Vegetation type has been inevitably shifted along with the climatic change, having more subtropical species native in southeast Asia or even in Africa. With the forest composition shift, it becomes more important than ever to analyze the water balance of the forest wihth the ongoing as well as upcoming climate change. Here, we implemented the Ecosystem Demography Biosphere Model (ED2) by initializing the key variables using forest inventory data (diameter at breast height in 2012). Out of 10,000 parameter sets randomly generated from prior distribution distributions of each parameter (i.e., Monte-Carlo Method), we selected four behavioral parameter sets using remote-sensing data (LAI-MOD15A2H, GPP-MOD17A2H, and ET-MOD16A2, 8-days at 500-m during 2001-2005), and evaluated the performances using eddy-covariance carbon flux data (2012 Mar.-Sep. 30-min) and remote sensing data between 2006-2020. We simulated each of the four RCP scenarios (2.6, 4.5, 6.0, and 8.5) from four climate forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 from ISIMIP2b). Based on those 64 simulation sets, we estimate the changes in water balance resulting from the forest composition shift, and also uncertainty in the estimates and the sensitivity of the estimates to the parameters, climate forcings, and RCP scenarios.

  • PDF

Study on Evaluation of Carbon Emission and Sequestration in Pear Orchard (배 재배지 단위의 탄소 배출량 및 흡수량 평가 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Sho, Kyuho;Lee, Jaeseok
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2016
  • Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about $25.6ton\;CO_2\;ha^{-1}$ by soil respiration. And $27.9ton\;CO_2\;ha^{-1}$ was sequestrated by biomass growth. Also about $12.6ton\;CO_2\;ha^{-1}$ was stored at pruning branches and about $5.2ton\;CO_2\;ha^{-1}$ for photosynthesis of herbs. As a result, 25.6 ton of $CO_2$ per ha is annually released to atmosphere. At the same time about 45.7 ton of $CO_2$ was sequestrated from atmosphere. When it sum up the amount of $CO_2$ release and sequestration, approximately $20.1ton\;CO_2\;ha^{-1}$ was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges ($17.8ton\;CO_2\;ha^{-1}\;yr^{-1}$) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of $CO_2$ dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

Study on the Estimation between CO2 Flux in Tree and Atmosphere (산림-대기 간 이산화탄소 교환량 산정 연구)

  • Kim, So Young;Park, Hyun Ju;Hong, You Deog;Han, Jin Seok;Son, Jung Seok;Park, Ji Hoon
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.305-316
    • /
    • 2013
  • The purpose of this study is to monitor the flux of $CO_2$ between the atmosphere and forest. The main research activities are conducted at Taehwa Mt. (Gangju, Kyeonggi, Korea), The Taehwa site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest. $CO_2$ flux was measured from September to November 2011 and March to June 2012. It was found that $CO_2$ fluxes were observed between the atmosphere and forest. $CO_2$ was absorbed by plants through photosynthesis during the day and released during the night. $CO_2$ flux were respectively observed 0.7~0.2, 0.5~0.1, $0.3{\sim}0.1mgCO_2m^{-2}s^{-1}$ in Septem- ber, October, November 2011. $CO_2$ fluxes released by plants in the early morning(00:00~07:30h) and evening(18:00~24:00h) time. But $CO_2$ was absorbed by plants through photosynthesis in the day time(08:00~7:30h).