• Title/Summary/Keyword: Eddy Current Effect

Search Result 168, Processing Time 0.031 seconds

Analysis of the Magnetic Effect on the Tube Infrastructure for a Super Speed Tube Train

  • Lee, Hyung-Woo;Cho, Su-Yeon;Cho, Woo-Yeon;Lee, Ju;Kwon, Hyeok-Bin
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.170-174
    • /
    • 2009
  • Super speed tube train is introduced to increase the speed of ground transportation. The super speed tube train levitates magnetically and runs in a partial vacuum tube, which can reduce the air resistance significantly. However, the strong magnetic force enough to propel the massive train can affect to the tube infrastructure. In this paper, authors have analyzed the leakage flux patterns and induced eddy current on the tube by using 3-dimensional Finite Element Method. These effects are investigated, especially by varying the materials and diameters of the tube. From the simulation results, the aluminum tube with the diameter of 3[m] is needed to be concerned because the induced eddy current produces joule heat, raises the inside temperature of the tube, and might be able to lead to electro-chemical corrosion on the tube, consequently reduce the durability.

  • PDF

A Study on Eddy-current Probe with Ferrite Cores over a Layered Half-Space (레이어가 있는 하프스페이스에서 페라이트코아가 있는 와류탐침에 대한 연구)

  • Kim, T.W.;Byun, K.R.;Choi, J.H.;Kang, E.S.;Hwang, H.J.
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.613-616
    • /
    • 1998
  • In this paper, a model of a Eddy-current probe coil with a ferrite core in the presence of a half-space with a layer is developed. The half-space with a layer is accounted for by computing the appropriate Green's function by using Bessel transforms. Upon introducing equivalent Amperian currents within a core to explain effect to a impedance change in the coil due to a (ferrite) core, we derive a volume integral equation, The integral equation is transformed via the method of moments into a vector-matrix equation, which is then solved using a linear equation solver. Through the above processing, we computed impedance value in a Eddy-current probe coil due to a conductivity change of layer.

  • PDF

The analysis of performance characteristics of a L.I.M with taken into consideration of end effect(II) -eddy current & air-gap flux density- (단부교리를 고려한 L.I.M의 동작특성 해석(II))

  • 임달호;장석명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.240-251
    • /
    • 1987
  • In this paper, with the end effect taken into consideration, the fundamental characteristics of a linear induction motor-the eddy currents of the secondary conducting sheet (traveller), the flux density in the air gap-are analysed by means of electromagnetic field theory. Accordingly, the derived governing eqations of the chatacteristics with goodness factor, presents that it was possible not only to predict the performance characteristics, but to obtain the data that needs to optimize a design of a motor with the reduction of the end effect.

  • PDF

A Geostrophic Adjustment Model of the Seasonal Variation of the Ulleung Warm Eddy

  • Seung Young Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.101-111
    • /
    • 2001
  • In an attempt to demonstrate the seasonal variation of the Ulleung Warm Eddy (UWE), in which the UWE changes its shape from a warm core ring in early spring to a warm lens in late summer under the effect of surrounding East Korean Warm Current (EKWC) Water, a simple geostrophic adjustment model is considered. Model results indicate that the buoyancy increase of the EKWC Water and the strengthening of the EKWC towards summer, both of which are typical of this region, are the major factors governing the seasonal variation of the UWE.

  • PDF

An analysis on the torque of hysteresis-motor concerned with penetration-effect of magnetic -field and eddy-current (자계 및 와전류 침수효과를 고려한 히스테리시스 전동기의 토오크에 대한 해석법)

  • 정연택
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.594-598
    • /
    • 1980
  • This paper describes an analytical method on the starting torque of hysteresis motor, taking account of penetration effects of magnetic-field and eddy-current into the rotor, to the elliptical approximation method of hysteresis-loop. By the above method, it have obtained the torque of rotor ring with non-magnetic and non-conductive material arbor, and the results are concerned and compared with that of computed by aid of callibration factor, k=1+exp(-2t$_{r}$/.delta.).)

  • PDF

고속회전용 자기베어링 시스템의 Eddy Current 효과에 관한 연구

  • 경진호;노승국;박종권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.274-277
    • /
    • 1997
  • Eddy current effect in a high speed rotor suspended by a mangnetic bearing is invstigated using electromagnetic field analysis technique. The non-zero conductivity model of a laminated rotor sleeve is proposed to concern electrical shorting of laminates due to rub, handling or press fit assembly,et al. As the rotating speed increase, the distibution of magnetic flux line is changed and the magnetic forces decrease remarkably. ANSYS Magnetics (version 5.3) is used for the magnetic field analysis.

Finite Element Analysis of the Eddy Currents Inside the Source Conductors (전류원 도체 내의 와전류 현상의 2차원 유한 요소 해석)

  • Kim, Hong-Kyu;Jung, Hyun-Kyo;Sim, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.22-24
    • /
    • 1998
  • The current distribution in the source coil region is analyzed using the two dimensional finite element method. The variables in the FEM are the magnetic vector potentials and the source current density. The boundary condition for the source current density is that the total current is the sum of the eddy current and the source current and is known quantity from measurement. The simulation results are compared with the analytical solution. It is found that the method can analyze the current distribution in the source conductors very accurately.

  • PDF

A FEM Analysis of Remote Field Eddy Current Distribution Characteristics to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자제분포 특성해석(I))

  • Huh, Hyung;Chung, Hyun-Kyu;Kim, Kern-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5 percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field phenomena. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

The Curvature and Shear Effects on the Eddy Viscosity

  • Lim, Hyo-Jae
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.293-297
    • /
    • 1999
  • Direct comparisons are made between curvature-corrected eddy viscosity models and the present experimental data. The results show that the curvature effects can be quantified through a curvature parameter R$\sub$c/ or S$\sub$c/ and a non-equilibrium value of p/$\varepsilon$. The data reveal a significant dependence of the eddy viscosity on the curvature and strain history for a fluid in a stabilizing curvature field, S$\sub$c/>1.0. Especially, experimental result shows that the eddy viscosity coefficient ratio at S$\sub$c/=3 changes from 10 to -10 although shear rate preserved constant. It is therefore suggested that proper curvature modifications, particularly the strain history effect, must be introduced into current eddy viscosity models for their application to turbulent flows subjected to curvature straining field for a non-negligible period of time.

  • PDF

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.