• Title/Summary/Keyword: Eddy Current Effect

Search Result 168, Processing Time 0.03 seconds

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

A Study on the magnetic properties of Mn-Zn Ferrite (Mn-Zn Ferrite의 자기적 특성에 관한 연구)

  • Kim Do-Hwan;Choi Young-Ji;Kwon Oh-Heung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.898-901
    • /
    • 2006
  • In this paper, effect of ceramic processing was investigated on the magnetic properties of low loss Mn-Zn ferrite. High frequency characteristics, high saturated magnetic flux density and high magnetic permeability and low magnetism loss are required for the development of Mn-Zn ferrite, which is parts in the communication. therefore, in order to improve Mn-Zn ferrite with a high frequency , it is important to have a minimal change of particles and to control the eddy current loss caused by high resistance of the stratum of particles and to reduce the hysteresis loss by uniform change of detailed structure. In this paper, we added $V_2O_5\;and\;CaCo_3$ to Mn-Zn Ferrite to achieve a high efficiency, low loss core material. The compositions are MnO : ZnO : $Fe_2O_3$ = 21 : 10 : 69 mol%. They were sintered at $1250^{\circ}C$ for Three hours. Initial permeability was measured at 0.1MHz. At 50mT, Power loss was measured by temperature changing at 100kHz.

  • PDF

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Development of Diagnosis System of Mold Oscillation in a Continuous Slab Casting Machine (연속 주조기의 주형 진동 진단 시스템의 개발)

  • Choi, Jae-Chan;Lee, Sung-Jin;Cho, Kang-Hyeong;Jun, Hyeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.84-94
    • /
    • 1996
  • In order to prevent shell sticking by providing sufficient lubrication between the strand and the mold, the mold oscillation has been used. Now it is well known that the shape of the oscillation curve has a decisive effect on the surface quality of the cast product. Besides, oscillation parameters such as stroke and frequency are also very important. In order to guarantee that parameters which have been found to be optimal for a certain grade of steel do not change with time, periodical checks of the physical condition of the whole equipment are necessary. The portable mold oscillation analyzer with integrated computer, developed by POSCO, records the movement of the mold in every spatial direction. The system uses the gap sensors to measure the mold movement (displacement ) in the two horizontal directions according to the mold narrow and broad faces and the vertical strokes in the four corners of mold. The gap sensor is a non-contacting minute displacement measuring device using the principle of high frequency eddy current loss. The mold oscillation diagnosis system integrates the gap sensors, their converters and the industrial portable computer with plug-in data acquisition boards. The all programs, such as the fast Fourier transformation module (amplitude and phase spectrums) and harmonic analysis module, was coded by LabVIEW$^{TM}$ software as the graphical language. In an own 'expert module' which is included in the diagnosis program, one can obtain much information about the mold oscillation equipment.

  • PDF

Effect of Agitation Speed and Air Rate on Separation Efficiency in Fly Ash Flotation (플라이애시 부유선별 과정에서 교반속도와 공기주입량 변화에 따른 영향 연구)

  • Kim, Min Sik;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study aimed to investigate the effects of mechanical factors such as agitation speed and air rate in fly ash flotation. Specifically, we used thermal power plant fly ash with unburned carbon content of 3.4 to 3.7%. The effect of pH, agitation speed, collector dosage, and frother dosage - the key factors of froth flotation - showed unburned carbon recovery and unburned carbon content of 63% and 34%, respectively, when the dosage of safflower oil used as collector was 800 g/ton, pH was 7, agitation speed was 1,200 rpm, and frother dosage was 400 g/ton. The SEM/EDS analysis of fly ash in that case indicated that the spherical fly ash particles lowered the unburned carbon content as they floated with the air bubbles without being dissolved in the unburned carbon or settled in the ore solution. The other experiment of changing the mechanical factors such as agitation speed and air rate resulted in unburned carbon recovery and unburned carbon content of 74% and 67%, respectively, at air rate of 8 L/min and agitation speed of 900 rpm. The recovery and unburned carbon content increased as the low agitation speed and additional air injection decreased the strength of the eddy current in the ore solution and consequently prevented the floating of fine fly ash particles with unburned carbon. In addition, the recovery rate and unburned carbon increased further to 80% and 70%, respectively, showing the best performance when the agitation speed and air rate were lowered to 800 rpm and 6 L/min, respectively.

Magnetic Properties of NixFe100-x(x=40~50) Permalloy Powders and Dust Cores Prepared by Gas-Atomization (가스 분무법으로 제조된 NixFe100-x(x=40~50) 퍼멀로이 분말 및 압분 코아의 자기적 특성)

  • Noh, T.H.;Kim, G.H.;Choi, G.B.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.218-223
    • /
    • 2002
  • We investigated the magnetic properties of High Flux-type $Ni_{x}Fe_{100-x}$(x=40∼50, wt.%) permalloy powders and dust cores. The powder was prepared by conventional gas atomization in mass production scale. At the composition of $Ni_{x}Fe_{55}$, saturation magnetization was maximum. In case of lower Ni content than X=45, the $M_{s}$, decreased largely with the decrease in Ni content, which is due to the invar effect. The permeability of compressed powder cores increased with the decrease in Ni content, which was considered to be due to the decrease in the magnetostriction. In addition, the dust core with Ni=45% showed the lowest core loss because of the increase in electrical resistivity leading to the low eddy current loss. From the better frequency dependence of permeability, larger Q value and superior DC bias characteristics of Ni=45% than those of Ni=50% core, it was confirmed that the 45%Ni-55%Fe powder alloy was better material for the dust core than commercial High Flux core materials.

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

Development of a High Performance Ocean Model using Julia Language (줄리아 언어를 이용한 고성능 해양모델의 개발)

  • KWON, MIN-SUN;KIM, JONG GU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.187-207
    • /
    • 2019
  • In order to develop a high performance ocean model, we used Julia, a Just-In-Time compile language, and to obtain the solution of the momentum equation, we made the code to solve the Poisson equation by the Successive Over-Relaxation method. And then we made two models to test Julia calculation codes. First, a simple channel form is modeled to test constant source/sink conditions. Second, the simplified Yellow Sea was modeled to test tidal forcing, Coriolis forces, and the effect of vertical eddy diffusivity coefficients. The model has been tested with a total of eight cases in the two scenarios. As a result of the test, the depth-averaged current speed of the three cases in Scenario 1 converged perfectly to the theoretical value, and that showed well a vertical flow velocity gradient due to the bottom friction. Also, the result of Scenario 2 represented well the amphidromic points of Yellow Sea and the tidal characteristics of mid-western and southwestern coast of Korea. Therefore, it is considered that the ocean model using Julia language has developed successfully, this suggests that the ocean model has come to the stage of successful transition from a classical compile language to a Just-In-Time compile language.