• Title/Summary/Keyword: Ectopic expression

Search Result 173, Processing Time 0.038 seconds

Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae

  • Kong, Yoon-Ju;Joo, Jeong-Hwan;Kim, Keun Pil;Hong, Soogil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.405-411
    • /
    • 2017
  • Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.

Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells

  • Jeong, Jee-Yeong;Zhou, Jin-Rong;Gao, Chong;Feldman, Laurie;Sytkowski, Arthur J.
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.411-416
    • /
    • 2014
  • In the present study, we demonstrate that ectopic expression of 56-kDa human selenium binding protein-1 (hSP56) in PC-3 cells that do not normally express hSP56 results in a marked inhibition of cell growth in vitro and in vivo. Down-regulation of hSP56 in LNCaP cells that normally express hSP56 results in enhanced anchorage-independent growth. PC-3 cells expressing hSP56 exhibit a significant reduction of hypoxia inducible protein (HIF)-$1{\alpha}$ protein levels under hypoxic conditions without altering HIF-$1{\alpha}$ mRNA (HIF1A) levels. Taken together, our findings strongly suggest that hSP56 plays a critical role in prostate cells by mechanisms including negative regulation of HIF-$1{\alpha}$, thus identifying hSP56 as a candidate anti-oncogene product.

Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53

  • Lee, Eun-Woo;Oh, Wonkyung;Song, Hosung Paul;Kim, Won Kon
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.373-378
    • /
    • 2017
  • The Jun activation-domain binding protein 1 (Jab1) induces p53 nuclear export and cytoplasmic degradation, but the underlying mechanism is poorly understood. Here, we show that phosphorylation at the threonine 155 residue is essential for Jab1-mediated p53 nuclear export. Jab1 stimulated phosphorylation of p53 at T155 was inhibited by curcumin, an inhibitor of COP9 signalosome (CSN)-associated kinases. The T155E mutant, which mimics phosphorylated p53, exhibited spontaneous cytoplasmic localization in the absence of Jab1. This process was prevented by leptinomycin B (LMB), but not by curcumin. The substitution of threonine 155 for valine (T155V) abrogated Jab1-mediated p53 nuclear export, indicating that phosphorylation at this site is essential for Jab1-mediated regulation of p53. Although T155E can be localized in the cytoplasm in the absence of Mdm2, the translocation of T155E was significantly enhanced by ectopic Hdm2 expression. Our data suggests that Jab1-mediated phosphorylation of p53 at Thr155 residue mediates nuclear export of p53.

Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila

  • Hong, Young Gi;Roh, Seyun;Paik, Donggi;Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.73-81
    • /
    • 2017
  • The ${\gamma}$-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ${\beta}$-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the ${\gamma}$-secretase catalytic component, presenilin, which lead to increased amyloid ${\beta}$-peptide production, are responsible for early-onset familial Alzheimer's disease. ${\beta}$-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of ${\gamma}$-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate ${\gamma}$-secretase activity and/or APPL metabolism.

Effect of PEL Exopolysaccharide on the wspF Mutant Phenotypes in Pseudomonas aeruginosa PA14

  • Chung, In-Young;Choi, Kelly B.;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1227-1234
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen that produces and secretes exopolysaccharides (EPS), in which cells are embedded to form a highly organized community structure called biofilm. Here, we characterized the role of cyclic diguanylate (c-di-GMP) and EPS (PEL) overproduction in the wspF mutant phenotypes of P. aeruginosa PA14 (wrinkly appearance, hyperadherence, impaired motilities, and reduced virulence in acute infections). We confirmed that the elevated c-di-GMP level plays a key role in all the wspF mutant phenotypes listed above, as assessed by ectopic expression of a c-di-GMP-degrading phophodiesterase (PvrR) in the wspF mutant. In contrast, PEL EPS, which is overproduced in the wspF mutant, was necessary for wrinkly appearance and hyperadherence, but not for the impaired flagellar motilities and the attenuated virulence of the wspF mutant. These results suggest that c-di-GMP affects flagellar motility and virulence, independently of EPS production and surface adherence of this bacterium.

Role of dipeptidyl peptidase-4 as a potentiator of activin/nodal signaling pathway

  • Park, Dong-Seok;Kim, Kyuhee;Jang, Minjoo;Choi, Sun-Cheol
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.636-641
    • /
    • 2018
  • DPP4 (dipeptidyl peptidase-4), a highly conserved transmembrane glycoprotein with an exo-peptidase activity, has been shown to contribute to glucose metabolism, immune regulation, signal transduction, and cell differentiation. Here, we show that DPP4 is involved in control of activin/nodal signaling in Xenopus early development. In support of this, gain of function of DPP4 augmented Smad2 phosphorylation as well as expression of target genes induced by activin or nodal signal. In addition, Dpp4 and Xnr1 showed synergistic effect on induction of ectopic dorsal body axis, when co-injected at suboptimal doses in early embryos. Conversely, saxagliptin, a DPP4 inhibitor repressed activin induction of Smad2 phosphorylation. Notably, overexpression of Dpp4 disrupted specification of dorsal body axis of embryo, leading to malformed phenotypes such as spina bifida and a shortened and dorsally bent axis. Together, these results suggest that DPP4 functions as a potentiator of activin/nodal signaling pathway.

Sub-Ciliary Segregation of Two Drosophila Transient Receptor Potential Channels Begins at the Initial Stage of Their Pre-Ciliary Trafficking

  • Kwon, Youngtae;Lee, Jeongmi;Chung, Yun Doo
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1002-1010
    • /
    • 2020
  • Cilia are important eukaryotic cellular compartments required for diverse biological functions. Recent studies have revealed that protein targeting into the proper ciliary subcompartments is essential for ciliary function. In Drosophila chordotonal cilium, where mechano-electric transduction occurs, two transient receptor potential (TRP) superfamily ion channels, TRPV and TRPN, are restricted to the proximal and distal subcompartments, respectively. To understand the mechanisms underlying the sub-ciliary segregation of the two TRPs, we analyzed their localization under various conditions. In developing chordotonal cilia, TRPN was directly targeted to the ciliary tip from the beginning of its appearance and was retained in the distal subcompartment throughout development, whereas the ciliary localization of TRPV was considerably delayed. Lack of intraflagella transport-related proteins affected TRPV from the initial stage of its pre-ciliary trafficking, whereas it affected TRPN from the ciliary entry stage. The ectopic expression of the two TRP channels in both ciliated and non-ciliated cells revealed their intrinsic properties related to their localization. Taken together, our results suggest that sub-ciliary segregation of the two TRP channels relies on their distinct intrinsic properties, and begins at the initial stage of their pre-ciliary trafficking.

Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) (ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해)

  • Kim, Hyo-Rim;Son, Jung-Bin;Lim, Seung-Hyun;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.492-498
    • /
    • 2012
  • To investigate whether phytochemicals affect cancer cell viability, human colorectal HCT116 cells were treated with four different phytochemicals. Among these phytochemicals, curcumin is the strongest inhibitor of cell proliferation. In addition, it decreased cell viability in a dose-dependent manner. To unveil the molecular mechanisms involved in the inhibition of cell proliferation by curcumin, we carried out oligo DNA microarray analysis. We found that 137 genes were up-regulated more than 2-fold, and 141 genes were down-regulated more than 2-fold by 25 ${\mu}M$ curcumin treatment. Among the up-regulated genes, we selected 3 genes (ATF-3, GADD45A, and NR4A1) to confirm microarray data. The results of RT-PCR strongly agreed with those of the microarray data. Among the phytochemicals used in this study, curcumin is the strongest inducer of ATF3 expression, and increased ATF3 expression in a dose-dependent manner. Interestingly, FACS analysis showed that the inhibition of cell growth by curcumin was recovered by ATF3-siRNA transfection. Finally, we detected the changes of gene expression by ectopic expression of ATF3. The results indicated that many up-regulated genes were related to apoptosis. Overall, these results suggest that ATF3 may play an important role in the anti-proliferative activity of curcumin in human colorectal cancer cells.

Gelsolin Induces Promonocytic Leukemia Differentiation Accompanied by Upregulation of p21CIP1

  • Shirkoohi, Reza;Fujita, Hisakazu;Darmanin, Stephanie;Takimoto, Masato
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4827-4834
    • /
    • 2012
  • Tumor suppressor genes have received much attention for their roles in the development of human malignancies. Gelsolin has been found to be down-regulated in several types of human cancers, including leukemias. It is, however, expressed in macrophages, which are the final differentiation derivatives for the monocytic myeloid lineage, implicating this protein in the differentiation process of such cells. In order to investigate the role of gelsolin in leukaemic cell differentiation, stable clones over-expressing ectopic gelsolin, and a control clone were established from U937 leukaemia cells. Unlike the control cells, both gelsolin-overexpressing clones displayed retarded growth, improved monocytic morphology, increased NADPH and NSE activities, and enhanced surface expression of the ${\beta}$-integrin receptor, CD11b, when compared with the parental U937 cells. Interestingly, RT-PCR and western blot analysis also revealed that gelsolin enhanced p21CIP1 mRNA and protein expression in the overexpressing clones. Moreover, transient transfection with siRNA silencing P21CIP1, but not the control siRNA, resulted in a reduction in monocytic differentiation, accompanied by an increase in proliferation. In conclusion, our work demonstrates that gelsolin, by itself, is capable of inducing monocytic differentiation in U937 leukaemia cells, most probably through p21CIP1 activation.

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.