• Title/Summary/Keyword: Ecosystem Monitoring

Search Result 501, Processing Time 0.03 seconds

Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique - From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do - (환경DNA 기술을 이용한 국내 담수어류종 탐지 가능성 - 경기도 민물고기생태학습관 중심으로 -)

  • Kim, Gawoo;Song, Youngkeun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study focused on verifying the identification of freshwater fish species in Korea using Environmental DNA (eDNA) technique. The research of DNA is increasing in the field of ecology, since this is more sensitive of identify rather than traditional investigation method. Which is difficult to detect species hidden in water and be easily influenced by diverse factors (sites, bad weather, researchers and so on). We applied the pilot test in aquarium (Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do), where freshwater fish species are inhabits. We conducted to sampling and analyzing the sixteen water samples (50 species from 7 orders and 13 families) using MiFish primer set. The results showed that 45 species (90%) was investigated by eDNA. It highlight that eDNA with universal primer is possible to detect freshwater fish species of Korean. However, the errors on species identification seems to be caused by the primer that be not suited perfectly and the pollution such as aquarium, sampling collectors.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Antioxidant Responses in Brackish Water Flea Diaphanosoma celebensis - Exposed to Mercury (수은 노출에 대한 기수산 물벼룩 Diaphnosoma celebensis의 항산화 반응)

  • Bae, Chulhee;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • Mercury (Hg) poses a threat to marine ecosystem due to continuous inflow from various industries and bioaccumulation to higher trophic level via food web. Mercury can adversely affect growth, development, reproduction and metabolism to aquatic organisms. In the present study, acute toxicity and oxidative stress markers (total glutathione content, and activities of GST, GR and GPx) were investigated in brackish water flea Disphanosoma celebensis exposed to HgCl2 for 24 h. As results, Hg showed negative effect in survival of D. celebensis. 24 h-LC50 value was determined as 0.589 mg/l (95% C.I. 0.521~0.655 mg/l). After exposure to Hg (0.08 and 0.4 mg/l) for 24 h, total glutathione content was significantly decreased, whereas GST, GPx and GR activities were enhanced. These findings indicate that Hg induced oxidative stress in D. celebensis, and oxidative stress markers may be involved in cellular defense against Hg - mediated toxicity. This study provides a better understanding of molecular mode of action of Hg toxicity in this specie and potent of molecular markers for heavy metal monitoring in marine ecosystem.

A Direction of the Monitoring of Household Chemical Products in Aquatic Environments: The Necessities for a Trophic Magnification Factor (TMF) Research on Fish (다양한 수생태계에 적용 가능한 유해물질의 영양확대계수 (trophic magnification factor, TMF) 연구 - 생활화학제품에서 기인한 성분과 어류조사를 중심으로)

  • Eun-Ji Won;Ha-Eun Cho;Dokyun Kim;Seongjin Hong;Kyung-Hoon Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.185-200
    • /
    • 2022
  • The risk of various hazardous substances in aquatic environment comprises not only the concentration of substances in the environmental medium but also their accumulation in fish through complex food web and the health risks to humans through the fish. In Korea, the monitoring of residual toxicant in aquatic ecosystems began in 2016 following the enforcement of the Acts on registration and evaluation for the management of chemicals used in daily life (consumer chemical products), and attention has been paid to potentially hazardous substances attributed to them. Recently, studies have been carried out to investigate the distribution of these hazardous substances in the ecosystem and calculate their emission factors. These include the accumulation and transport of substances, such as detergents, dyes, fragrances, cosmetics, and disinfectants, within trophic levels. This study summarizes the results of recently published research on the inflow and distribution of hazardous substances from consumer chemical products to the aquatic environment and presents the scientific implication. Based on studies on aquatic environment monitoring techniques, this study suggests research directions for monitoring the residual concentration and distribution of harmful chemical substances in aquatic ecosystems. In particular, this study introduces the directions for research on trophic position analysis using compound specific isotope analysis and trophic magnification factors, which are needed to fulfill the contemporary requirements of selecting target fish based on the survey of major fish that inhabit domestic waters and assessment of associated health risk. In addition, this study provides suggestions for future biota monitoring and chemical research in Korea.

An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea - (하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

Seasonal Dynamics of Pathogenic Microorganisms (Cryptosporidium, Giardia and Fecal Bacteria) in an Artificial Lake Ecosystem (Sangsa Lake, Korea)

  • Kim, Sung-Hyun;Kim, Hyun-Woo;Lee, Hak-Young;Kahng, Hyung-Yeel
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.161-165
    • /
    • 2008
  • This study was performed for the purpose of monitoring monthly levels of two pathogenic microorganisms, Cryptosporidium and Giardia, from November 2005 to August 2007 in Sangsa Lake. Water temperatures, pH and DO fluctuated seasonally at the study site. Annual mean values of BOD, COD and SS were $0.8\;mg\;L^{-1}$, $2.3\;mg\;L^{-1}$ and $1.9\;mg\;L^{-1}$ respectively. Although there was distinct seasonal variation in water chemistry and chlorophyll $\underline{a}$ concentration, the lake generally contains low concentrations of nutrients and chlorophyll $\underline{a}$. The relative abundance of coliform bacteria was always greater than that of fecal coliform. The fecal coliform bacteria comprised $8.5{\sim}22.1%$ of total coliform bacteria. Seasonal analysis of Cryptosporidium and Giardia levels in the study site showed that in winter (November through February), Cryptosporidium oocysts and Giardia cysts were most abundant ($1.1{\sim}1.8\;{\times}\;10\;cells\;L^{-1}$ and $3.8{\sim}5.1\;{\times}\;10\;cells\;L^{-1}$, respectively), while in summer (July through September) the abundance was lowest ($0.0{\sim}0.3\;{\times}\;10\;cells\;L^{-1}$ and $0.9{\sim}2.9\;{\times}\;10\;cells\;L^{-1}$, respectively). Molecular identification revealed two subtypes of Cyrptosporidium parvum in Sangsa Lake.

Prediction of changes in distribution area of Scopura laminate in response to climate changes of the Odaesan National Park of South Korea

  • Kwon, Soon Jik;Kim, Tae Geun;Park, Youngjun;Kwon, Ohseok;Cho, Youngho
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.529-536
    • /
    • 2015
  • This study was performed to provide important basic data for the preservation and management of Scopura laminata, a species endemic to Korea, by elucidating the spatial characteristics of its present, potential, and future distribution areas. Currently, this species is found in the Odaesan National Park area of South Korea and has been known to be restricted in its habitat due to its poor mobility, as even fully grown insects do not have wings. Utilizing the MaxEnt model, 20 collection points around Odaesan National Park were assessed to analyze and predict spatial distribution characteristics. The precision of the MaxEnt model was excellent, with an AUC value of 0.833. Variables affecting the potential distribution area of S. laminata by more than 10% included the range of annual temperature, seasonality of precipitation, and precipitation of the driest quarter, in order of greatest to least impact. Compared to the current potential distribution area, no significant difference in the overall habitable area was predicted for the 2050s or 2070s. It was, however, demonstrated that the potential habitable area would be reduced in the 2050s by up to 270.3 km from the current area of 403.9 km; further, no potential habitable area was anticipated by the 2070s according to our predictive model. Taken together, it is anticipated that this endemic species could be significantly affected by climate changes, and hence effective countermeasures are strongly warranted for the preservation of habitats and species management.

A Study of Wildlife Roadkill in Joongang Highway (우리나라 야생동물의 도로치사에 관한 연구 -중앙고속도로의 동물치사 사례를 중심으로-)

  • Lee, Sang-Don;Cho, H.S.;Kim, J.G.
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.1
    • /
    • pp.21-31
    • /
    • 2004
  • Construction of highway would influence wildlife habitat being fragmented and deteriorated. It is inevitable to observe the death of animals that are killed by vehicles. Nonetheless the cause and status of animal roadkill have not been studied, and this study first attempted to analyze the roadkill in major highway in Korea. We collected 860 individuals of dead animals in Joongang Highway during 1996-2003. Among them Korean hare(Lepus sinensis) was totaled in 165 individuals(19.2%) with the highest figure; Korean racoon dog(Nyctereutes procyonoides) was 146(17.0%); Korean squirrel(Sciurus vulgaris) 56(6.5%); Korean roe deer(Capreolus capreolus) 26(3.0%). Domestic animals was totaled in 232 individuals(27.0%); domestic dog(Canis familiairis) 25, and domestic cat(Catus felis) 207. This study also categorized habitat as mountain-mountain, mountain-plain, mountain-river, plain-plain, plain-river, river-river in each side of the road. Habitat of mountain-plain was the heightest with 296(38.9%) individuals followed by mountain-mountain with 263(34.6%). This indicates that wild animals associated with mountain habitat was most influenced by the construction of roads. This study implied that we should mitigate the roadkill by designing artificial construction such as eco-bridge, fences along the sideway, and boxes under the highway, underdrain structure, etc. The monitoring and cause of habitat fragmentation with GIS approach should be followed to reduce the roadkill.

A Study on the Behavior Change of Zebrafish For Toxicity Evaluation of Residual Psychoactive Medication in Wastewater Treatment Plant Effluent (하수처리시설 방류수 내 잔류 향정신성 의약품의 독성평가를 위한 zebrafish의 행동성 변화 연구)

  • Yoon, Hyojik;Kim, Minjae;Kim, Jongrack;Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2019
  • As interest in health issues increases, it is imperative to ensure good water quality from wastewater treatment plant effluent to preserve environmental health. In particular, currently there is a lack of water ecosystem risk assessment on pharmaceutical substances remaining in effluent. In this study, antidepressant escitalopram (ESC), antiepileptic carbamazepine (CBZ) and lead, which impact the behavior of aquatic organisms, were used to test their impact on the potential behavior of zebrafish. Zebrafish have been widely used in toxicological assessment studies due to the ease of handlinggenerically and genetically. It was possible to observe changes in the growth of organisms through monitoring the embryos' cognitive and behavior assessment. In this study, the embryo lethal dose test showed that the lethal concentration of ESC and CBZ was at 10 ppb, which is below the water quality criterion (100 ppb), increased by 32.5 % and 40 %, respectively. In the cognitive test, it was found that the cognitive ability function decreased by 22 % and 17% for ESC(500 ppb) and CBZ(1,000 ppb) respectively relative to control. Based on these results, it is necessary to initiate efforts to remove these trace pollutants from sewage treatment facilities to protect the health of aquatic organisms.

Bioclimatic Classification and Characterization in South Korea (남한의 생물기후권역 구분과 특성 규명)

  • Choi, Yu-Young;Lim, Chul-Hee;Ryu, Ji-Eun;Piao, Dongfan;Kang, Jin-Young;Zhu, Weihong;Cui, Guishan;Lee, Woo-Kyun;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2017
  • This study constructed a high-resolution bioclimatic classification map of South Korea which classifies land into homogeneous zones by similar environment properties using advanced statistical techniques compared to existing ecological area classification studies. The climate data provided by WorldClim(1960-1990) were used to generate 27 bioclimatic variables affecting biological habitats, and key environmental variables were derived from Correlation Analysis and Principal Component Analysis. Clustering Analysis was performed using the ISODATA method to construct a 30'(~1km) resolution bioclimatic classification map. South Korea was divided into 21 regions and the results of classification were verified by correlation analysis with the Gross Primary Production(GPP), Actual Vegetation map made by the Ministry of Environment. Each zones' were described and named by its environmental characteristics and major vegetation distribution. This study could provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions.