• Title/Summary/Keyword: Ecohydrological system

Search Result 5, Processing Time 0.021 seconds

Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective (온대활엽수림 생태수문계의 과정망: 복잡계 관점)

  • Yun, Juyeol;Kim, Sehee;Kang, Minseok;Cho, Chun-Ho;Chun, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.157-168
    • /
    • 2014
  • From a complex systems perspective, ecohydrological systems in forests may be characterized with (1) large networks of components which give rise to complex collective behaviors, (2) sophisticated information processing, and (3) adaptation through self-organization and learning processes. In order to demonstrate such characteristics, we applied the recently proposed 'process networks' approach to a temperate deciduous forest in Gwangneung National Arboretum in Korea. The process network analysis clearly delineated the forest ecohydrological systems as the hierarchical networks of information flows and feedback loops with various time scales among different variables. Several subsystems were identified such as synoptic subsystem (SS), atmospheric boundary layer subsystem (ABLS), biophysical subsystem (BPS), and biophysicochemical subsystem (BPCS). These subsystems were assembled/disassembled through the couplings/decouplings of feedback loops to form/deform newly aggregated subsystems (e.g., regional subsystem) - an evidence for self-organizing processes of a complex system. Our results imply that, despite natural and human disturbances, ecosystems grow and develop through self-organization while maintaining dynamic equilibrium, thereby continuously adapting to environmental changes. Ecosystem integrity is preserved when the system's self-organizing processes are preserved, something that happens naturally if we maintain the context for self-organization. From this perspective, the process networks approach makes sense.

Periodic Variation of Water Table at a Headwater Catchment in the Gwangneung Ecohydrological Research Site (광릉 수문연구부지 내 원두부 소유역에서 지하수면의 주기적 변동 특성)

  • Kim, Yu-Lee;Woo, Nam-C.;Lee, Sang-Duck;Hong, Tae-Kyung;Kim, Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Periodic fluctuation of water levels were analyzed for their causes and effects on groundwater movement. Groundwater levels were monitored from two shallow monitoring wells, G1 and G4, located at a headwater catchment in the Gwangneung Ecohydrological Research Site using pressure transducers with automatic data-loggers by five-minute interval from February to October, 2006. The water table fluctuates on a daily basis with a clear diurnal variation, and the fluctuation amplitude increases with time from the winter to the summer. Results from spectral analysis of water-level data show periodic variations in 24.38 hour and in 12.19 hour, indicating $P_1$ diurnal and $L_2$ semidiurnal tidal components, respectively. The diurnal component of the water level in summer has greater power than that in winter, implying that the water table is affected not only by earth tides, but also by evapotranspiration. Right after rain stops, the power of diurnal component of the water level decreases, indicating that evapotranspiration influences significantly diurnal periodicity. The effects of diurnal and semidiurnal components of the water level range from 0.4 to 4.2 cm and from 0.2 to 0.7 cm, respectively.

Evaluation of Watershed Hydrology Using Ecohydrological Model (생태수문모델을 이용한 유역수문 평가)

  • Shin, Hyung-Jin;Park, Min-Ji;Park, Geun-Ae;Joh, Hyung-Kyung;Ha, Rim;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.127-127
    • /
    • 2011
  • 본 연구에서는 RHESSys (Regional Hydro-Ecologic Simulation System) 모형을 이용하여 산림 유역의 생태수문학적 거동을 평가하고자 한다. 설마천 유역($8.48\;km^2$)을 대상으로 2007~2009년의 관측 일유출량을 이용하여 유출량을 검 보정하였고, 증발산량 및 토양수분은 신뢰할 만한 실측자료를 바탕으로 모형의 보정(2007-2008)및 검증(2009)을 실시하였다. 또한 지구의 탄소순환을 규명할 수 있는 식생의 순광합성량과 총일차생산량에 대한 모형의 검 보정은 Terra 위성의 MODIS (Moderate Resolution Imaging Spectroradiometer) 센서를 이용한 산출물인 순광합성량과 총일차생산량 자료를 바탕으로 모형의 보정(2007)및 검증(2008)을 실시하였다. 모형의 최적의 수문, 생리생태학, 토양의 매개변수를 선정하여 검증한 결과, 유출량에 대한 Nash-Sutcliffe 모형효율은 0.84, 증발산, 토양수분, 총일차생산량, 순광합성량의 결정계수는 0.49, 0.18, 0.38, 0.93 이었다.

  • PDF

Analysis of runoff reduction and storage capacity in permeable pavement parking lot (투수성 주차장에서의 강우 유출저감 및 저류용량 분석)

  • Jung, Yongjun;Min, Kyungsok
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Generally, a parking lot is constructed using asphalt or concrete. Such materials are impermeable, which means that a parking lot will directly release pollutants to any nearby water system during a rainfall event. An increased quantity of nonpoint source pollutants harms the ecohydrological system and causes further environmental damage leading to dysfunctional water circulation systems. Therefore, there is an urgent need for the design and application of Low Impact Development (LID) systems that allow more effective prevention of water circulation problems and management of nonpoint source pollution. This study aims to support such efforts by analyzing a permeable paver parking lot constructed using one of the LID techniques and comparing it to a conventional one in terms of the concentration of pollutants, nonpoint source pollution load and runoff rainfall lag effects during a rainfall event; it could serve as a reference for the construction of permeable paver parking lots in the future.

Ecological flow calculations and evaluation techniques: Past, present, and future

  • LIU Yang;Wang Fang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.28-28
    • /
    • 2023
  • Most countries worldwide are finding it difficult to make decisions regarding the utilization of water resources and the ecological flow protection of rivers because of serious water shortages and global climate warming. To overcome this difficulty, accurate ecological flow processes and protected ecological objectives are required. Since the introduction of the concept, ecological flow calculations have been developed for more than 60 years. This technical development has always been dominated by countries such as the United States, Australia, and the United Kingdom. The technical applications, however, vary substantially worldwide. Some countries, for instance, did not readjust the method because of a lack of understanding of the ecological effect or because they failed to achieve elaborate scheduling. Mostly, readjustments were not made because the users could not make their choices from among numerous methods for ecological flow. This paper presents three research results based on a systematic review of 240 methods with clear connotation boundaries. First, the ecological flow algorithm was developed along with the scientific and technological progress in the river ecosystem theory, ecohydrological relationship, and characterization and simulation of hydrological and hydrodynamic processes. In addition, the basis of the method has evolved from the hydrological process of the ecosystem, hydraulics-habitat conditions, and social development interference to whole ecosystem simulation. Second, 240 methods were classified into 50 sub-categories to evaluate their advantages and disadvantages according to the ecological flow algorithms of hydrology, hydraulics, habitat, and other comprehensive methods. According to this evaluation, 60% of the methods were not suitable for further application, including the method based on the percentage of natural runoff. Furthermore, the applicability of the remaining methods was presented according to the evaluation based on the aspects of allocation of water resources, water conservancy project scheduling, and river ecological evaluation. Third, In the future, most developing countries should strengthen the guarantee of high-standard ecological flow via a coordination mechanism for the ecological flow guarantee established under a sustainable framework or via an ecological protection pattern at the national level according to the national system. Concurrently, a reliable ecological flow demand process should also be established on the basis of detailed investigation and research on the relationship between river habitats, ecological hydrology, and ecological hydraulics. This will ensure that the real-time evaluation of ecological flow forces the water conservancy project scheduling and accurate allocation of water.

  • PDF