DOI QR코드

DOI QR Code

Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective

온대활엽수림 생태수문계의 과정망: 복잡계 관점

  • Yun, Juyeol (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University) ;
  • Kim, Sehee (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University) ;
  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Cho, Chun-Ho (National Insititute of Meteorological Research, Korea Meteorological Administration) ;
  • Chun, Jung-Hwa (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Joon (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University)
  • 윤주열 (서울대학교 생태조경.지역시스템공학부) ;
  • 김세희 (서울대학교 협동과정 농림기상학전공) ;
  • 강민석 (국가농림기상센터) ;
  • 조천호 (국립기상연구소) ;
  • 천정화 (산림과학원 산림보전부) ;
  • 김준 (서울대학교 생태조경.지역시스템공학부)
  • Received : 2014.09.27
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

From a complex systems perspective, ecohydrological systems in forests may be characterized with (1) large networks of components which give rise to complex collective behaviors, (2) sophisticated information processing, and (3) adaptation through self-organization and learning processes. In order to demonstrate such characteristics, we applied the recently proposed 'process networks' approach to a temperate deciduous forest in Gwangneung National Arboretum in Korea. The process network analysis clearly delineated the forest ecohydrological systems as the hierarchical networks of information flows and feedback loops with various time scales among different variables. Several subsystems were identified such as synoptic subsystem (SS), atmospheric boundary layer subsystem (ABLS), biophysical subsystem (BPS), and biophysicochemical subsystem (BPCS). These subsystems were assembled/disassembled through the couplings/decouplings of feedback loops to form/deform newly aggregated subsystems (e.g., regional subsystem) - an evidence for self-organizing processes of a complex system. Our results imply that, despite natural and human disturbances, ecosystems grow and develop through self-organization while maintaining dynamic equilibrium, thereby continuously adapting to environmental changes. Ecosystem integrity is preserved when the system's self-organizing processes are preserved, something that happens naturally if we maintain the context for self-organization. From this perspective, the process networks approach makes sense.

본 총설에서는 산림생태계의 생태수문시스템을 복잡계의 관점에서 바라 보았을 때, (1) 생태수문계의 구성 요소들이 상호작용을 통해 망을 형성하고 집단적인 반응을 하며, (2) 복잡정교한 정보 처리를 수행하고, (3) 자기-조직화 과정을 통해 적응해 가는 복잡계의 특징들을 볼 수 있을 것이라고 가정하였다. 제시된 과정망 그리기의 결과는 생태수문계에 관여하는 다양한 시공간 규모의 과정들이 실제로 관련 변수들 간의 되먹임과 정보 흐름의 망을 형성하고 있음을 명확히 보여준다. 또한 구성 변수들이 독특한 형태(즉, 차별화된 결합 형태, 방향성 및 시간 지연 규모)로 정보를 교환함으로써, 망 안에 또 다른 망을 형성하며 일관되게 조직화되어 특정한 하부계들을 구성하는 계층적(hierarchical) 구조를 잘 나타낸다. 이러한 하부계들이 종관 하부계(SS), 대기경계층 하부계(ABLS), 생물리 하부계(BPS), 생물리화학 하부계(BPCS) 등으로 다양하게 나타남을 보여준다. 주목할 점은, 이러한 하부계들이 서로 되먹임 고리들을 맺거나 끊음으로써 지역하부계(RS)와 같은 새로운 하부계의 집합체를 생성하거나, 또는 분리시킨다는 것이다. 이러한 과정은 바로 복잡계의 특성인 자기-조직화 과정의 증거로서, 생태계가 계층적으로 조직화되어 성장하고 발전하면서, 자연적/인위적 교란 속에서도 자기-조직화를 통해 동적 평형을 유지하며, 환경 변화에 적응하고 진화해 나감을 함축적으로 의미한다. 생태계의 건전성은 시스템의 자기-조직화 과정들이 유지될 때에 비로소 보존되는 것이기 때문에, 이러한 관점에서 과정망 연구방법은 의미있고 이치에 닿는다.

Keywords

References

  1. Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K. T. Paw, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82, 2415-2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  2. Barabasi, A. L., 2002: Linked: How everything is connected to everything else and what it means. Plume Editors.
  3. Hong, J., H. Kwon, J. Lim, Y. Byun, J. Lee and J. Kim, 2009: Standardization of KoFlux eddy-covariance data processing, Korean Journal of Agricultural and Forest Meteorology 11(1), 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  4. Jorgensen, S. E., B. D. Fath, S. Bastianoni, J. C. Marques, F. Muller, S. N. Nielsen, B. C. Patten, E. Tiezzi, and R. E. Ulanowicz, 2007: A New Ecology: Systems Perspective, Elsevier, Amsterdam
  5. Kang, M., J. Kim, J. H. Chun, and Y. H. Kim, 2014: Improvement and expansion of standardized KoFlux eddy covariance data processing. in preparation.
  6. Knuth, K. H., 2005: Lattice duality: The origin of probability and entropy. Neurocomputing 67, 245-274. doi:http://dx.doi.org/10.1016/j.neucom.2004.11.039
  7. Kumar, P., 2007: Variability, feedback, and cooperative process dynamics: Elements of a unifying hydrologic theory. Geography Compass 1, 1338-1360. doi:10.1111/j.1749-8198.2007.00068.x
  8. Meadows, D. H., 2008. Thinking in systems: A primer. Chelsea Green Publishing
  9. Ruddell, B. L., N. A. Brunsell, and P. Stoy, 2013: Applying information theory in the Geosciences to quantify process uncertainty, feedback, scale. Eos, Transactions American Geophysical Union 94, 56-56. doi:10.1002/2013EO050007
  10. Ruddell, B. L., and P. Kumar, 2009. Ecohydrologic process networks: 1. Identification. Water Resources Research 45, W03419. doi:10.1029/2008WR007279
  11. Schreiber, T., 2000: Measuring information transfer. Physical Review Letters 85, 461-464. doi:10.1103/PhysRevLett.85.461
  12. Shannon, C. E., 1948: A Mathematical Theory of Communication. Bell System Technical Journal 27, 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
  13. Yun, J., M. Kang, S. Kim, J. H. Chun, C. H. Cho, and J. Kim, 2014. How is the process network organized and when does it show emergent properties in a forest ecosystem?. Emergence, Complexity and Computation. Springer, Heidelberg, pp. 307-317. doi:10.1007/978-3-642-45438-7_31

Cited by

  1. Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.227
  2. Research Trends and Future Direction for Sustainable Agricultural and Forest Management vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.236
  3. On the Nighttime Correction of CO2Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain vol.16, pp.3, 2014, https://doi.org/10.5532/KJAFM.2014.16.3.233