• Title/Summary/Keyword: Eco-friendly bio-coating

Search Result 5, Processing Time 0.024 seconds

Manufacturing of Multi-Layer Coated Paper with Eco-Friendly BioBinder for Cost Saving(2) - Application for Top-Coating Layer - (친환경 원가 절감형 바이오바인더를 이용한 다층 도공지 제조(제2보) - Top-coating층에 대한 적용 -)

  • An, Guk Heon;Choi, Ki Soon;Won, Jong Myoung;Lee, Yong Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Bio-binder is well known as a promising alternative binder for SB latex because it is eco-friendly and inexpensive, compared to synthetic latex. SB latex in top coating color was substituted with starch-based bio-binder to investigate its effects on the coating color and its coated paper properties. Bio-binder contributed to the increase of coating color viscosity, and the improvement of water retention. Most optical properties except opacity were deteriorated by the increase of bio-binder dosage. It was also found that the increase of bio-binder substitution in top coating color brought about the increase of roughness, and decrease of coated paper gloss, print gloss, dry and wet pick strength. However the stiffness and the ink set-off of the bio-binder coated paper were improved. Overall, mostly adverse effects of bio-binder on the properties of coating color and its paper were observed. Therefore, it is not recommended to use bio-binder as top coating color.

Manufacture of Multi-Layer Coated Paper with Eco-Friendly Starch Based Bio-Binder(1) - Application Possibility of Bio-Binder - (친환경 전분계 바이오 바인더를 이용한 다층 도공지 제조(제1보) - 바이오 바인더의 적용 가능성 -)

  • An, Guk Heon;Choi, Ki Soon;Won, Jong Myoung;Lee, Yong Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.32-38
    • /
    • 2012
  • This study was carried out to elucidate the potential in substitution of SB latex with eco-friendly starch based bio-binder as a coating binder. The part of SB latex in coating color of pre- and top layer was substituted with starch based bio-binder in order to evaluate the characteristics of coating color and coated paper, and printability. The viscosity and water retention of coating color were increased by substitution of SB latex with starch based bio-binder. Roughness of coated paper was increased by substitution with starch based bio-binder, although there was not significant changes in roughness when SB latex is used as a binder in pre-coating color. Brightness and whiteness of coated paper were not affected, but opacity and print mottle were improved by substitution with starch based bio-binder. The interesting result observed was that dry-pick did not affected significantly, and ink set-off was improved by starch based bio-binder. It is expected that starch based bio-binder can be commercialized if the systematic further research works are carried out.

Manufacturing of Multi-Layer Coated Paper with Eco-Friendly Bio-Binder for Cost Saving (1) - Application for Pre-Coating Layer - (친환경 원가 절감형 바이오바인더를 이용한 다층 도공지 제조(제1보) - Pre-coating층에 대한 적용 -)

  • An, Guk Heon;Choi, Ki Soon;Won, Jong Myoung;Lee, Yong Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.63-70
    • /
    • 2014
  • Part of SB latex in pre-coating color was substituted with newly developed starch-based bio-binder in order to investigate the effect of starch-based bio-binder in pre-coating color on the properties of coating color and coated paper. Smoothness and gloss of coated paper were decreased with the increase of bio-binder substitution ratio. Brightness and whiteness did not show the significant changes, but stiffness was improved with bio-binder. Ink set-off, dry-pick and wet pick were decreased with the increase of bio-binder substitution ratio. In general, when all SB latex is substituted with bio-binder, ink set-off, dry- and wet-pick were deteriorated. However, it was found that if the bio-binder substitution ratio is controlled below 50%, similar qualities with coated paper manufactured by the use of SB latex binder can be obtained.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix (BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구)

  • Bae, Jun Ho;Ham, Seong Su;Park, Sung Cheol;Park, and Kwi-Il
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.