• Title/Summary/Keyword: Eco-friendly automobile

Search Result 43, Processing Time 0.023 seconds

A Review on Accident Type Analysis and Crossing Control Measures for Tram Accident Prevention (트램사고 방지를 위한 사고유형 분석 및 교차로 제어방안에 대한 고찰)

  • Kim, You-Ho;Lee, Soo-Hwan;Kim, Ye Ji;Hwang, Hyeoncheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.212-219
    • /
    • 2015
  • Korea's first tram (so called "tram"), which was commenced the operation on May 4, 1899 of late Joseon Dynasty and run until 1968, played a pivotal role of public transportation. However, tram as new transportation mean is being recognized as traffic congestion problem becomes issue due to geometric automobile increase and reckless urban plan after stoppage of tram service. Tram has an advantage of inexpensive construction cost and eco-friendly means compared to existing and city railway, carrying more passengers rather than existing bus, excellent connectivity of existing transportation because of easy accessible to destination in the city center. Therefore, tram, what is called "Green Rvolution of Public Transportation", has a dreaming of revival and in the process of pushing. We suggest the accident type which might break out in the early stage of tram introduction and preventive measures by surveying the accident cases of tram advanced country, and study the crossing control measures.

The Analysis of Energy Loss of Pneumatic Tire and Non-pneumatic Tire on Impact (공기압 타이어와 비 공기압 타이어의 노면 충격 시 에너지 손실 연구)

  • Kim, Jinkyu;Jo, Hongjun;Kim, Heecheol;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2014
  • For the prevention of environmental pollution, there have been many researches which are eco-friendly vehicles in the automobile industry. In this paper, we studied for the non-pneumatic tires(NPT)can increase fuel consumption compared to conventional pneumatic tires. On driving, energy loss of tires occur when tires impact an obstacle on the road. This energy loss directly is relate to the fuel efficiency. Therefore, the energy loss of non-pneumatic tires is compared before and after impact. In this study, the results of energy loss of non-pneumatic tires and pneumatic tires was compared, when tires are rolled over an obstacle. As a result, the energy loss of non-pneumatic tires was less than pneumatic tires. This researches were performed the ABAQUS using finite element method and obtained the difference of velocity and kinetic energy from the program.

Microstructure and Mechanical Property of A356 for Rheocasting Using 6-Pole Electromagnetic Stirring Casting Process (6극 전자석 전자교반 레오캐스팅에 따른 A356의 조직적 / 기계적 영향분석)

  • Kim, Baek-Gyu;Roh, Jung-Suk;Bang, Hee-Jae;Heo, Min;Park, Jin-Ha;Jeon, Chung-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2020
  • Rheo-diecasting with stirring has been used in many material industries. As the 4th Industrial Revolution approaches the world, eco-friendly high-strength and light-weight materials become more important. Casting methods have been studied and used for aluminum-alloy automobile parts. This study carried out the effect analysis of the micro-structure and mechanical properties, such as yield/ultimate tensile strength, elongation, and hardness, of A356 using the 6-pole EMS (electro-magnetic stirring) casting process with a high electromagnetic force. As a result, the hardness and elongation of the A356 after T6 heat-treatment show a significant improvement, respectively, by 20% and 50%.

A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location (전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구)

  • Gwon, Sunmin;Woo, Hyungu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

A Study on Properties of SSBR/NdBR Rubber Composites Reinforced by Silica

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.202-206
    • /
    • 2018
  • Five solution styrene butadiene rubber/neodymium butadiene rubber (SSBR/NdBR) composites were manufactured using different ratios of SSBR and NdBR. In this study, the composites were reinforced with NdBR and silica to confirm the physical properties of SSBR used for treads of automobile tires and the dispersibility with silica. The morphologies of the rubber composites were observed using field-emission scanning electron microscopy (FE-SEM). The crosslinking behaviors of the composites were tested using a rubber process analyzer (RPA), and the abrasion resistances were tested using a National Bureau of Standards (NBS) abrasion tester. The hardness values, tensile strengths, and cold resistances of the composites were also tested according to ASTM standards. Increased NdBR content yielded composites with excellent crosslinking properties, abrasion resistances, hardnesses, tensile strengths, and cold resistances. The crosslinking point increased due to the double bond in NdBR, thereby increasing the degree of crosslinking in the composites. The NdBR-reinforced composites exhibited excellent abrasion resistances, which is explained as follows. In SSBR, a breakage is permanent because a resonance structure between styrene and SSBR forms when the molecular backbone is broken during the abrasion process. However, NdBR forms an additional crosslink due to the breakdown of the molecular backbone and high reactivity of the radicals produced. In addition, the low glass transition temperature (Tg) of NdBR provided the rubber composites with excellent cold resistances.

Analysis of Hot Forging Process of Check Valve in FCEV using Finite Element Method (유한요소법을 이용한 FCEV용 체크밸브의 열간 단조 공정 해석)

  • Jung, Dong-Hwan;Song, Hyun-Jung;Lee, Chang-Hoon;Lee, Seung-Beom;Kim, Ji-Hoon;Shon, Keun-Joo;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.100-107
    • /
    • 2021
  • The use of new and renewable energy is essential to solve the problem of increasing fossil fuel use due to industrial development. The paradigm of the automobile industry has changed due to the strengthening of environmental regulations in developed countries, and the development of eco-friendly cars is underway. Fuel cell electric vehicles (FCEVs), which use hydrogen as fuel, require strict standards for fuel-related components. In particular, check valves for FCEV control high-pressure hydrogen and thus, must be sufficiently strong for the challenging environment caused by high-pressure hydrogen. Therefore, this study used DEFORM 3D, a regular finite element analysis program, to check the moldability of check valves for FCEV, design the process, verify reliability through single streamline analysis, tensile tests, and ANSYS simulations, and identify suitable materials for the high-pressure hydrogen environment.

A Study on Analysis of Development Effectiveness of Composite Brake through Real Car Comparison and Verification (실차 비교 및 검증을 통한 복합재 브레이크의 개발 효용성 분석에 관한 연구)

  • Shim, J.H.;Kwon, Y.U.;Lee, J.H.;Shin, U.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Composite material is recently very important material for eco-friendly vehicles because of its excellent mechanical property and lightweight effect. So, many research results have been recently published for developing the composite material to apply vehicles. In this paper, new brake system is presented using composite material to response this situation. And advantages in terms of performance compared to competitive company will be discussed in depth to verify superiorities of the new composite brake. To do so, composite brake systems which have the same size as the competitive company to the same vehicle is applied. And superiorities through a variety of test results are presented. First, normal braking performances are compared with competitive company through braking effect, heat capacity and friction test, Second, circuit driving and high speed fade test are also verified with competitive company to confirm harsh braking performances for the new composite brake system. Finally, the effects of applying the composite brake to automobile industry like electric car are analyzed.

A Study on the Development of EV Powertrain System Simulator for Education and Training (교육훈련용 EV 동력 시스템 시뮬레이터 개발에 대한 연구)

  • Dong-June Shin
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2023
  • The biggest core task in the new modern automobile industry lies in the development of eco-friendly vehicles with the goal of 0% emissions by the EU by 2035. Accordingly, in an era where the industry is rapidly changing with electric vehicles, education and training on EV electric vehicles are urgently needed. In this study, by developing a core EV powertrain system simulator excluding the chassis platform (body, tire, etc.) used identically to existing internal combustion locomotives, Understand the EV powertrain system, including mechanical engineering, electrical engineering, and electronic engineering applications. Through this course, we intend to use it as a medium to develop engineering and convergence development capabilities.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.