• Title/Summary/Keyword: Eco-friendly Power Supply System

Search Result 28, Processing Time 0.024 seconds

Design and Implementation of Eco-friendly Power Supply System for Moveable-weir Using PV Module and Li-ion Battery (태양광모듈과 리튬이온전지를 이용한 가동보용 친환경 전원공급장치의 설계 및 구현)

  • Kang, Min-Kwan;Choi, Sung-Sik;Nam, Yang-Hyeon;Lee, Hu-Dong;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.186-193
    • /
    • 2018
  • Generally, it is difficult to operate moveable-weir due to the expensive cost of the facility management and manpower consumption. Also, when it is installed in a remote area, there is a problem that the cost of connection for power system increases as well as the operating cost. Therefore, this paper proposes an optimal design algorithm to replace an existing power system with an Eco-friendly power supply system for movable-weir using PCS, PV module and lithium-ion battery. Also, this paper proposes a modeling method of environment-friendly power supply system for a movable-weir based on the PSCAD/EMTDC S/W and implements 5[kW] prototype environment-friendly power supply system. As a result of the performance test using the S/W modeling and the prototype system, it is confirmed that the proposed system has stable characteristics in the independent operation mode and the interconnection mode.

Operation Method of Power Supply System for Eco-friendly Movable-weir Based on Natural Energy Sources (자연에너지를 이용한 친환경 가동보용 전원공급시스템의 운용방안)

  • Kwon, Pil-June;Lee, Hu-Dong;Tae, Dong-Hyun;Park, Ji-Hyun;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.601-610
    • /
    • 2020
  • Recently, damage caused by drought is becoming worse and worse due to the global climate change. To overcome these problems, movable-weir to control the water level has been installed instead of a fixed-weir made from concrete. On the other hand, it is difficult to operate an existing moveable-weir because of the high cost of facility management and manpower consumption. In addition, because most moveable-weirs are installed in power systems, the operating cost and the cost of connection for power systems increase when they are located in remote areas. Therefore, this paper proposes an optimal design algorithm and the evaluation algorithm of the SOC (state of charge) of a lithium-ion battery to replace an existing power supply with eco-friendly movable-power with a power supply system using PV modules and lithium-ion batteries. In addition, this study modeled a 50kW power supply system of a movable-weir using PSCAD/EMTDC S/W. The simulation results confirmed that the proposed algorithm has stable operation characteristics in an independent operation mode and interconnection operation mode and that there is the possibility of commercialization with a benefits evaluation of the eco-friendly power supply system of a movable-weir.

Prediction of the Electric Vehicles Supply and Electricity Demand Using Growth Models (성장모형을 활용한 전기자동차 보급과 전력수요 예측)

  • Hyo Seung Han;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.132-144
    • /
    • 2023
  • European and American countries are actively promoting eco-friendly cars to reduce exhaust emissions from internal combustion engines. In Korea, the "4th Basic Plan for Eco-Friendly Vehicles" aims to promote eco-friendly cars by improving charging infrastructure, expanding incentive systems, and targeting the supply of 1.13 million eco-friendly cars by 2025. As rapid growth in the number of electric vehicles sold is expected, estimates are required of this growth and corresponding power demands. In this study, the authors used a growth model to predict future growth in the electric vehicle market and a previously derived electricity generation model to estimate corresponding power demands up to 2036, the target year of the "10th Basic Plan for Power Supply and Demand". The results obtained provide useful basic research data for future electric vehicle infrastructure planning.

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

Configuration and Efficiency Computation of the DPP System for Energy Harvesting of Renewable Energy (신재생에너지의 에너지 하베스팅을 위한 DPP시스템의 구성과 효율계산)

  • Park, Seung-Hwa;Lee, Hyun-Jae;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.137-142
    • /
    • 2018
  • Energy harvesting technology is drawing attention as a means of collecting various eco-friendly energy and accumulating residual energy. Recently, differential power processing (DPP) is being developed as part of energy harvesting. This is being studied as a solution to the loss of power generation between power modules and the problems caused by module small losses depending on the size of power production. In this paper, we propose the necessity of the DPP by comparing and analyzing energy harvesting related module integration system and power supply efficiency of DPP. The power efficiency of the converter and the power difference between the wind power and the photovoltaic power supply have been changed to demonstrate the effectiveness of the proposed system.

6kW V2H Power Converter Using Isolated CLLC DAB Converter

  • Ko, Hyun-Seok;Hwangbo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.493-504
    • /
    • 2022
  • Recently, as interest in eco-friendliness grows, the supply of hybrid electric vehicles and pure electric vehicles (EVs) for improving fuel efficiency of automobiles is rapidly expanding. The average daily energy consumption of electric vehicles is less than 20 [%] of the total ESS capacity of the vehicle, and research on additional functions using the ESS of the vehicle is urgently needed to expand the supply of electric vehicles. V2H(Vehicle to Home), like V2G(Vehicle to Grid), includes the concept of cooperating with system stabilization using ESS of electric vehicles. In addition, it includes various operations that can realize home welfare, such as uninterrupted power supply in case of power outage at home, and power supply for home DC devices. Therefore, in order to expand the supply of eco-friendly electric vehicles, it is urgently required to develop a V2H system with various functions that can realize home welfare. In this paper, we propose a V2H system with a CLLC resonant converter and a non-isolated step-up converter that can solve different impedance and resonant frequencies depending on the power transfer direction. The proposed V2H system is 6 [kVA] applicable to 150-450 [V], the voltage range that can use the ESS voltage for electric vehicles, and is designed with a capacity that can handle instantaneous electricity use at home. In addition, in order to verify the feasibility, an experiment by Psim simulation and prototype production was performed.

Study on a Fully Electrified Car Ferry Design Powered by Removable Battery Systems Considering Domestic Coastal Environment

  • Hong, Jang Pyo;Kim, Young-Shik;Shim, Hyung-Won;Kang, Hee-Jin;Kim, YunHo;Kim, Gyu Bum;Cho, Seongpil
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • As increasing the international community's awareness of greenhouse gas reduction, the demand for eco-friendly ship fuel has accelerated recently. The fundamental aim of this study is to develop a new type of fully electrified ferry for passengers and cars considering Korean domestic coastal environmental conditions. Several technical difficulties are encountered in applying a fully electric propulsion system based on removable battery systems into a ship due to limitations imposed by the batteries' size and capacity. This paper reviews and analyzes marine environment regulations strengthened recently, technology trends related to fully electric propulsion vessels in each country, and Korean domestic coastal environments. We propose a new fully electrified car ferry design with a displacement of 400 t applied in Korea. It is powered by removable battery systems pre-charged in a safe inland charging station. The mobile battery system is developed to enable roll-on and roll-off using wheels. The characteristics of the ship motion are analyzed based on the weight and location of the battery systems. We expect our battery systems to be applicable to larger ships in the future.

Advanced LDC Test Bed Using Energy Recovery Technique for HEVs

  • Kim, Yun-Sung;Jung, Dong-Wook;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.911-919
    • /
    • 2013
  • This paper reports the development of test bed with the energy recovering technique using two-step boost converter. The device is utilized for LDC aging test of Hyundai Motor's LPI AVANTE HEV in mass production. The developed power recycle type test bed is designed as 1.5 kW class to test up to the maximum load power of LDC and is also designed to supply scant power supply up to 500 W after power recycle. The theoretical design analysis and operational characteristics analysis results of test bed are reported, and its practicality and reliability are verified through the test result. Also, the finally developed test bed confirms approximately 79~85 % energy saving effect compared to the usual traditional aging test system.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

A Study on Take-off and Landing Experimental System for Development of Power Platforms for Electric Vertical Take-Off and Landing Air Mobility (전기 수직이착륙 항공모빌리티용 동력플랫폼 개발을 위한 이착륙 실험시스템 연구)

  • Jun-Seong, Weon;Kwang-Hyun Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.639-648
    • /
    • 2023
  • In modern society, UAM (Urban Air Mobility) transportation system is being developed as an alternative to urban traffic congestion and environmental problems, and electric vertical take-off and landing (eVTOL) is a combination of vertical take-off and landing function and electric power. It is attracting attention as an innovative next-generation transportation method as an eco-friendly alternative that reduces noise and air pollution by providing efficient mobility within the city. Since eVTOL development requires designing and implementing airframes suitable for various mission purposes, the power system needs to be developed as a platform concept before airframe development. In this study, we empirically proposed a test bench concept equipped with a stable power supply and an efficient control system, essential in developing a power platform with a combined function in the form of a fuselage and module type specialized for various mission purposes. The proposed drivetrain platform test bench consists of a system verifying the stable take-off and landing software and a power platform adjusting the motor's thrust. It will serve as a verification system that can be developed.