• 제목/요약/키워드: Eco friendly concrete

검색결과 189건 처리시간 0.027초

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • 제11권2호
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: A state-of-the-art review

  • Shireen T. Saadullah;James H. Haido;Yaman S.S. Al-Kamaki
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.35-57
    • /
    • 2023
  • Majority of the plastic produced each year is being disposed in land after single-use, which becomes waste and takes up a lot of storage space. Therefore, there is an urgent need to find alternative solutions instead of disposal. Recycling and reusing the PET plastic waste as aggregate replacement and fiber in concrete production can be one of the eco- friendly methods as there is a great demand for concrete around the world, especially in developing countries by raising human awareness of the environment, the economy, and Carbon dioxide (CO2) emissions. Self-compacting concrete (SCC) is a key development in concrete technology that offers a number of attractive features over traditional concrete applications. Recently, in order to improve its durability and prevent such plastics from directly contacting the environment, various kinds of plastics have been added. This review article summarizes the latest evident on the performance of SCC containing recycled PET as eco-friendly aggregates and fiber. Moreover, it highlights the influence of substitution content, shape, length, and size on the fresh and properties of SCC incorporating PET plastic. Based on the findings of the articles that were reviewed for this study, it is observed that SCC made of PET plastic (PETSCC) can be employed in construction era owing to its acceptable mechanical and fresh properties. On the other hand, it is concluded that owing to the lightweight nature of plastic aggregate, Reusing PET waste in the construction application is an effective approach to reduces the earthquake risk of a building.

피마자유기반 바이오폴리머와 골재를 혼합한 어도의 어류이동효율 실험연구 (A Study on Fish Movement Efficiency in Biopolymer and Aggregate Mixed Fishway)

  • 이동진;장민호;강준구;안홍규
    • Ecology and Resilient Infrastructure
    • /
    • 제11권1호
    • /
    • pp.11-22
    • /
    • 2024
  • 어도는 하천에 어류의 이동이 곤란할 경우 이를 해소할 수 있도록 인위적으로 만들어진 수로 또는 장치이다. 기존 어도의 경우 대부분 콘크리트 제품으로 독성물질을 용출하여 하천환경에 부정적 영향을 미치고 있다. 이에 친환경적이고 이동효율을 높일 수 있는 어도 조성 기술 개발이 필요하다. 본 연구에서 제시된 기술은 골재와 골재사이를 무독성 소재인 피마자유에서 추출한 바이오폴리머 소재와 결합한 일체형 다공성 구조물로써 표면에 식생을 활착시킬 수 있는 친환경 소재를 활용한 어도 조성 기술이다. 이에 바이오폴리머와 골재를 혼합한 친환경어도의 어류이동효율에 대하여 실규모로 조성하여 실험, 분석하였다. 실험 결과 Tag를 삽입하고 방류된 어류는 총 14종 201개체였으며, 방류된 개체의 감지율은 평균 82.6%로 높은 것으로 나타났다. 어도를 통과하여 상류로 소상한 어류는 총 6종 40개체로 평균 통과율은 21.7%로 확인되었다. 일주기 이동패턴을 확인한 결과 모든 어류가 주간에 주로 이동하는 것으로 나타났다. 바이오폴리머를 활용한 어도와 콘크리트 어도의 기능적 차이가 크지 않은 것으로 판단되며, 바이오폴리머를 활용한 어도는 기존 콘크리트 어도를 대체해 사용할 수 있을 것으로 판단된다.

황토콘크리트의 현장적용에 따른 시공 및 품질 특성에 관한 연구 (A Study on Construction and Quality in accordance with the Field Application of Hwangto Concrete)

  • 황혜주;문제춘;강남이
    • KIEAE Journal
    • /
    • 제9권1호
    • /
    • pp.91-97
    • /
    • 2009
  • In this thesis presents the application to the field of Hwangto-used concrete highlighted as an eco-friendly material and performs an experiment in the aspect of construction and quality on the construction for all parts of buildings, rather than for some parts of buildings as shown from existing application and got the conclusion as followings. 1) It was turned out that Hwangto concrete showed lower hydrated heat and arid contraction comparing to those of cement concrete. And this phenomenon is judged to appear high when applied to mass building and huge span structures. 2) The construction of Hwangto concrete is judged to be possible in applying to constructions since the mechanical construction seems to be possible by using pump car and ready-mixed concrete which are used at the practical sites at the moment. 3) The pockmarks appearing on the exposure surface were about 2% of total area. This has great cohesion by Hwangto concrete but is judged that it will be improved through enough vibration stamping. Through the experiments of quality and construction of Hwangto concrete as environment-friendly construction materials, it is possible to judge modernized application of Hwangto concrete. It is in need of more studies about economical efficiency, structural stability, design application, etc. afterwards.

알칼리활성화제 치환율에 따른 무시멘트 다공성 콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Non-Cement Porous Concrete with Alkali-Activator Contents)

  • 김동현;김춘수;박찬기
    • 한국농공학회논문집
    • /
    • 제55권2호
    • /
    • pp.59-64
    • /
    • 2013
  • The present study is to evaluate physical and mechanical properties of porous concrete having non cement that mainly causes carbon emission. This study aims to explore eco-friendly concrete technology capable of reducing the amount of carbon emission due to the use of normal cement by substituting it with non cement porous concrete to which alkali-activator and blast-furnace slag powder are impregnated. As experimental variables, 5 %, 6 %, 7 %, 8 %, 9 % and 10 % of alkali-activator were substituted as binders and applied. Testing evaluated in this study were pH value, void ratio, compressive strength and residual compressive strength shown after being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution. The test results were compared with those tested with the use of porous concrete to which 400 $kg/m^3$ of unit cement amount was applied as binder. In consequence, it was concluded that; as for pH value, it was decreased than was the case in which cement was used, but increased with the more the use of alkali activator; as for void ratio and compressive strength, the mix proportion in which 9 % and 10 % of alkali activator were applied in terms of substitution ratio showed the result similar to the mixture in which 400 $kg/m^3$ of unit cement ratio was applied; and, as for residual compressive strength in the case of being immersed in $H_2SO_4$ solution and $Na_2SO_4$ solution, the compressive strength was increased, thus leading to improved chemical resistance.

염화물 침투 현장조사 및 제설제에 따른 부식특성 (Field Investigation of Chloride Penetration and Evaluation of Corrosion Characteristics for Deicer)

  • 양은익;김명유;박해균
    • 한국방재학회 논문집
    • /
    • 제8권6호
    • /
    • pp.47-52
    • /
    • 2008
  • 겨울철 도로의 결빙을 방지하기 위하여 염화물계 제설제가 많이 사용되고 있으며, 매년 사용량이 증가하고 있다. 이러한 제설제의 사용은 구조물의 부착강도 저하, 표면스케일링, 환경오염을 발생시킨다. 본 연구에서는 17년간 사용해 온 콘크리트 도로 시설물의 피해상황에 대하여 현장조사를 실시하였으며, 기존 제설제와 개발된 친환경 제설제의 부식 저항성에 대한 비교 실내실험을 수행하였다. 현장피해 조사결과에 따르면, 제한 염화물량의 침투 깊이는 평균 40 mm정도로 나타났고, 조사구간의 표면 염화물 농도는 $3.45kg/m^3$으로 조사되었으며, 이에 비해 탄산화 깊이는 매우 적었다. 한편, 친환경 제설제의 경우, 기존 염화물계 제설제에 비해 염화물 침투 깊이가 적었으며, 부식저항성도 높은 것으로 나타났다.

Structural performance and SWOT analysis of multi-story buildings of lightweight reinforced concrete comprising local waste materials

  • Walid A., Al-Kutti;A.B.M. Saiful, Islam;Zaheer Abbas, Kazmi;Mahmoud, Sodangi;Fahad, Anwar;Muhammad, Nasir;Muhammad Arif Aziz, Ahmed;Khalid Saqer, Alotaibi
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.493-502
    • /
    • 2022
  • In recent decades, infrastructural development has exploded, particularly in the coastal region of Saudi Arabia. The rising demand of most consumed aggregate in construction can be effectively compensated by the alternative material like scoria which lavishly exists in the western region. Scoria is characterized as lightweight aggregate beneficially used to develop lightweight concrete (LWC) - a potential alternative of normal weight concrete (NWC) ensuring reduction in the structural element's size, increase in building height, comparatively lighter foundation, etc. Hence, the goal of this study is to incorporate scoria-based structural lightweight concrete and evaluate its impact on superstructure and foundation design beside contributing to the economy of construction. Fresh, mechanical, and rheological properties of the novel LWC have been investigated. The structural analyses employ the NWC as well as LWC based structures under seismic and wind loadings. The commercial finite element package - ETABS was employed to find out the change in structural responses and foundations. The cost estimation and SWOT analysis for superstructure and foundation have also been carried out. It was revealed that the developed LWC enabled a more flexible structural design. Notable reduction in the steel and concrete prices of LWC might be possible in the low-rise building. It is postulated that the cost-effective and eco-friendly LWC will promote the usage of scoria as an effective alternative in Saudi Arabia and GCC countries for structurally viable LWC construction.

고성능감수제를 혼입한 갯벌모르타르의 역학적 특성에 대한 실험적 연구 (A Experimental Study of Mechanical properties in mud flat mortar mixed with High-range Water reducer)

  • 이흥열;김희두;이지선;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.115-116
    • /
    • 2015
  • Since concrete has evolved to the development of the quality and performance there currently being used civil engineering, as the most important material in the construction sector. But the discovery of alternative building materials and indiscriminate use is negligible. So that is the situation facing the shortage of natural aggregate. Accordingly, this study reviewed the mechanical properties by replacing the aggregate through the mud flat of eco-friendly materials and analyze the usability by adding a high-performance water reducer for promoting workability.

  • PDF

고주파 접착기를 사용한 복합석재판의 콘크리트 벽체 부착 시공 (The Construction Method which attached Complex Stone Panel to Concrete Wall using High-Frequency Holt-Melt Machine)

  • 오창원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.45-49
    • /
    • 2010
  • The contamination(stain phenomenon) of natural marble(sipeol, bianko) of art wall of on-site interior finishing system and wall of elevator hall has occurred. The bottom of the art wall of stone junction tile has defects as cracks. To solve these problems, our research team developed eco-friendly complex stone panel(stone 4T + cement board 6T) and high-frequency hot-melt construction method that can construct in winter.

  • PDF