Purpose: Planning for radiotherapy relies on implicit estimation of the probability of tumor control and the probability of complications in adjacent normal tissues for a given dose distribution. Methods: The aim of this pilot study was to reconstruct dose-volume histograms (DVHs) from text files generated by the Eclipse treatment planning system developed by Varian Medical Systems and to verify the integrity and accuracy of the dose statistics. Results: We further compared dose statistics for intensity-modulated radiotherapy of the head and neck between the Eclipse software and software developed in-house. The dose statistics data obtained from the Python software were consistent, with deviations from the Eclipse treatment planning system found to be within acceptable limits. Conclusions: The in-house software was able to provide indices of hotness and coldness for treatment planning and store statistical data generated by the software in Oracle databases. We believe the findings of this pilot study may lead to more accurate evaluations in planning for radiotherapy.
Kim, Jung-in;Han, Ji Hye;Choi, Chang Heon;An, Hyun Joon;Wu, Hong-Gyun;Park, Jong Min
Journal of Radiation Protection and Research
/
v.43
no.2
/
pp.59-65
/
2018
Background: We analyzed changes in the doses, structure volumes, and dose-volume histograms (DVHs) when data were transferred from one commercial treatment planning system (TPS) to another commercial TPS. Materials and Methods: A total of 22 volumetric modulated arc therapy (VMAT) plans for nasopharyngeal cancer were generated with the Eclipse system using 6-MV photon beams. The computed tomography (CT) images, dose distributions, and structure information, including the planning target volume (PTV) and organs at risk (OARs), were transferred from the Eclipse to the MRIdian system in digital imaging and communications in medicine (DICOM) format. Thereafter, DVHs of the OARs and PTVs were generated in the MRIdian system. The structure volumes, dose distributions, and DVHs were compared between the MRIdian and Eclipse systems. Results and Discussion: The dose differences between the two systems were negligible (average matching ratio for every voxel with a 0.1% dose difference criterion = $100.0{\pm}0.0%$). However, the structure volumes significantly differed between the MRIdian and Eclipse systems (volume differences of $743.21{\pm}461.91%$ for the optic chiasm and $8.98{\pm}1.98%$ for the PTV). Compared to the Eclipse system, the MRIdian system generally overestimated the structure volumes (all, p < 0.001). The DVHs that were plotted using the relative structure volumes exhibited small differences between the MRIdian and Eclipse systems. In contrast, the DVHs that were plotted using the absolute structure volumes showed large differences between the two TPSs. Conclusion: DVH interpretation between two TPSs should be performed using DVHs plotted with the absolute dose and absolute volume, rather than the relative values.
Kim, Hojin;Kwak, Jungwon;Jeong, Chiyoung;Cho, Byungchul
Progress in Medical Physics
/
v.28
no.3
/
pp.122-128
/
2017
Eclipse Scripting Application Programming Interface (ESAPI) was devised to enhance the efficiency in such treatment related workflows as contouring, treatment planning, plan quality measure, and data-mining by communicating with the treatment planning system (TPS). It is provided in the form of C# programming based toolbox, which could be modified to fit into the clinical applications. The Scripting program, however, does not offer all potential functionalities that the users intend to develop. The shortcomings can be overcome by combining the Scripting programming with user-executable program on Windows or Linux. The executed program has greater freedom in implementation, which could strengthen the ability and availability of the Scripting on the clinical applications. This work shows the use of the Scripting programming throughout the simple modification of the given toolbox. Besides, it presents the implementation of combining both Scripting and user-executed programming based on MATLAB, applied to automated dynamic MLC wedge and FIF treatment planning procedure for promoting the planning efficiency.
Intensity-modulated radiation therapy (IMRT) is believed to be one of the best radiation treatment techniques. IMRT is able to deliver fatal doses of radiation to the tumor region with minimal exposure of critical organs. It is essential to have a comprehensive quality assurance program to assure precision and accuracy in treatment, due to the character of IMRT. We applied quality assurance technique to the Eclipse treatment planning system and sought to determine its effectiveness in patient treatment planning. An acrylic phantom, film, and an ionization chamber were used in this study.
Purpose: To evaluate the incidence and prognostic factors of treatment-related pneumonitis in non-small-cell lung cancer(NSCLC) patients treated with intensity modulated radiation therapy(IMRT). Materials and Methods: One-hundred-five patients with NSCLC treated with IMRT between 1 August 2004 and 30 November 2006 were analyzed retrospectively. The mean age of patients was 62.9 years, and squamous carcinomas were confirmed in 81 patients(77%). Sixty-six patients(62.9%) were classified as stage III, and 59 patients had lesions in the right lung. Twenty-seven patients were treated with a dose of 3,060 cGy preoperatively, and 10 patients were given a dose of 5,040 cGy postoperatively. Sixty-eight patients received a dose of 7,020 cGy for curative intent. Sixty-eight patients were treated with the use of the CORVUS planning system and 37 patients were treated with the use of the ECLIPSE planning system. Results: Of 105 patients, 21 patients(20%) had abnormal radiological findings, but only seven patients(6.7%) required treatment for radiation pneumonitis. Six of the seven patients had other serious lesions, including a bronchioesophageal fistula(one patient), recurrence in the treatment field(two patients), brain metastasis(one patient) and lung-to-lung metastasis(two patients); all of these patients died within 19 months after radiation treatment. Sixteen patients(23.5%) that received planning with the CORVUS system had abnormal lung findings. Five patients(13.5%) had abnormal lung findings with the use of the ECLIPSE planning system. Other prognostic factors such as perioperative radiation therapy, a volume over 10% of the V20 volume in the right lung, were also statistically significant. Conclusion: This retrospective analysis suggests that IMRT could be a beneficial treatment modality for the reduction of radiation pneumonitis in NSCLC patients. However, the higher incidence of abnormal radiological findings in perioperative patients treated with relatively lower doses($3,060{\sim}5,040$ cGy) suggest the need for judicious treatment planning in preoperative or postoperative treatment.
PTV considered for the energy, dose distribution exposed to lung and spinal cord, and the characteristic of DVH(Dose Volume Histogram) were compared and investigated by planning the intensity modulated radiation therapy (IMRT) using the photon energies of 6 MV and 10 MV according to tumor location like as the anterior, middle, and posterior regions of lung, and the mediastinum region in lung cancer patients. Our institution installed the linear accelerator (Varian 21 EX-s, USA) equipped with 120 multileaf collimator for lung cancer patients, which is producing the photon energies of 6 MV and 10 MV, and radiation therapy planning was performed with ECLIPSE system (Varian, SomaVision 6.5, USA), which support inverse treatment planning. The tomographic images of 3 mm slice thickness for lung cancer patients were acquired using planning CT, and acquired tomographic images were sent to the Varis system, and then treatment planning was performed in the ECLIPSE system. The radiation treatment planning of the IMRT was processed from various angles according to the regions of the tumor, and using various beam lines according to the size and location of the tumor. The investigation of the characteristic of dose distributions for the energy of 6 MV and 10 MV according to tumor locations in lung cancer patients resulted that the maximum dose of 10 MV energy was 1.2% less than that of 6 MV energy without depending on the tumor location of lung cancer, and the reduction effects of MU were occurred from 10 to 25 MU. Radiation dose exposed to the lung satisfied the less 30% of V20, however radiation dose in 6 MV energy was from 0.1% to 0.5% less than that in 10 MV energy. Radiation dose exposed to the spinal cord for 6 MV energy was from 0.6% to 2.1% less than that for 6 MV energy.
Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
The Journal of Korean Society for Radiation Therapy
/
v.24
no.2
/
pp.137-147
/
2012
Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.
The Journal of Korean Society for Radiation Therapy
/
v.22
no.1
/
pp.41-46
/
2010
Purpose: To analyze differences in the dose uniformity for the computed breast radiation therapy planning with tangential beam between conventional RT using wedge filter and FiF-IMRT using multileaf collimator based onsizes and volumes of breasts. Materials and Methods: Thirty breast cancer patients were classified according to the sizes and volumes of the breasts using Eclipse treatment planning system ($Varian^{TM}$, USA, V8.0). Conformity Index and Homogeneity Index were computed along with Dose Volume Histogram. Results: No differencein CI (${\pm}1.2%$) was observed. However, lower mean HI (1.67%) in FiF-IMRT was observed compared to that of the conventional RT. Statically significant (P<0.01) correlation was identified between the values of ${\Delta}HI$ (%) and physical parameters such as breast volumes and separations. Conclusion: Increase in breast volume and separation improves the dose uniformities in computed radiation therapy planning for FiF-IMRT. Physical dimension of the breast should be considered to optimize the compured radiation therapy planning.
Seongmoon Jung;Jaeman Son;Hyeongmin Jin;Seonghee Kang;Jong Min Park;Jung-in Kim;Chang Heon Choi
Progress in Medical Physics
/
v.34
no.2
/
pp.15-22
/
2023
This study compared the dose calculated using the electron Monte Carlo (eMC) dose calculation algorithm employing the old version (eMC V13.7) of the Varian Eclipse treatment-planning system (TPS) and its newer version (eMC V16.1). The eMC V16.1 was configured using the same beam data as the eMC V13.7. Beam data measured using the VitalBeam linear accelerator were implemented. A box-shaped water phantom (30×30×30 cm3) was generated in the TPS. Consequently, the TPS with eMC V13.7 and eMC V16.1 calculated the dose to the water phantom delivered by electron beams of various energies with a field size of 10×10 cm2. The calculations were repeated while changing the dose-smoothing levels and normalization method. Subsequently, the percentage depth dose and lateral profile of the dose distributions acquired by eMC V13.7 and eMC V16.1 were analyzed. In addition, the dose-volume histogram (DVH) differences between the two versions for the heterogeneous phantom with bone and lung inserted were compared. The doses calculated using eMC V16.1 were similar to those calculated using eMC V13.7 for the homogenous phantoms. However, a DVH difference was observed in the heterogeneous phantom, particularly in the bone material. The dose distribution calculated using eMC V16.1 was comparable to that of eMC V13.7 in the case of homogenous phantoms. The version changes resulted in a different DVH for the heterogeneous phantoms. However, further investigations to assess the DVH differences in patients and experimental validations for eMC V16.1, particularly for heterogeneous geometry, are required.
Seung Mo Hong;Uiseob Lee;Sung-woo Kim;Youngmoon Goh;Min-Jae Park;Chiyoung Jeong;Jungwon Kwak;Byungchul Cho
Progress in Medical Physics
/
v.34
no.1
/
pp.1-9
/
2023
Purpose: Although ionization chambers are widely used to measure beam commissioning data, point-by-point measurements of all the profiles with various field size and depths are time-consuming tasks. As an alternative, we investigated the feasibility of a linear diode array for commissioning a treatment planning system. Methods: The beam data of a Varian TrueBeam® radiotherapy system at 6 and 10 MV with/without a flattening filter were measured for commissioning of an Eclipse Analytical Anisotropic Algorithm (AAA) ver.15.6. All of the necessary beam data were measured using an IBA CC13 ionization chamber and validated against Varian "Golden Beam" data. After validation, the measured CC13 profiles were used for commissioning the Eclipse AAA (AAACC13). In addition, an IBA LDA-99SC linear diode array detector was used to measure all of the beam profiles and for commissioning a separate model (AAALDA99). Finally, the AAACC13 and AAALDA99 dose calculations for each of the 10 clinical plans were compared. Results: The agreement of the CC13 profiles with the Varian Golden Beam data was confirmed within 1% except in the penumbral region, where ≤2% of a discrepancy related to machine-specific jaw calibration was observed. Since the volume was larger for the CC13 chamber than for the LDA-99SC chamber, the penumbra widths were larger in the CC13 profiles, resulting in ≤5% differences. However, after beam modeling, the penumbral widths agreed within 0.1 mm. Finally the AAALDA99 and AAACC13 dose distributions agreed within 1% for all voxels inside the body for the 10 clinical plans. Conclusions: In conclusion, the LDA-99SC diode array detector was found to be accurate and efficient for measuring photon beam profiles to commission treatment planning systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.