• Title/Summary/Keyword: Eccentric Motion

Search Result 91, Processing Time 0.027 seconds

Effect of Non-elastic Taping on Ankle Dorsiflexion and Activity of the Triceps Surae Muscles While Vertical Jumping (수직점프 시 비탄력 테이핑이 발목 발등굽힘과 하퇴삼두근의 근활성도에 미치는 영향)

  • Kim, Geun-Su;Weon, Jong-Hyuck;Jung, Do-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.4
    • /
    • pp.11-17
    • /
    • 2016
  • PURPOSE: There are several standard interventions for managing Achilles tendinitis, including eccentric exercise and calf muscle stretches, orthoses, electrotherapy, and taping. However, no study has determined the effect of non-elastic taping on deloading the Achilles tendon while vertical jumping. Therefore, this study determined the effect of non-elastic taping on ankle dorsiflexion and the triceps surae muscle activity while vertical jumping in healthy subjects. METHODS: The study recruited 17 participants. A motion analysis system was used to measure the angle of ankle dorsiflexion and wireless surface electromyography was used to measure the soleus and gastrocnemius activities while vertical jumping. Non-elastic taping was applied on randomized leg side. All subjects performed maximal effort vertical jumps without and with non-elastic taping, with three trials for each condition. The mean peak dorsiflexion and muscle activities during the three trials were calculated and paired t-tests were used to compare the mean values without and with non-elastic taping. Significance was defined as (p<.05). RESULTS: The maximum angle of ankle dorsiflexion and activity of the gastrocnemius muscle decreased significantly when non-elastic tape was applied (p<.05), while there was no significant difference in the soleus activity between no-taping and taping (p>.05). CONCLUSION: We introduce non-elastic taping as a method to decrease maximum ankle dorsiflexion and gastrocnemius activity while vertical jumping.

Echocardiographic Diagnosis of Mitral Valve Dysplasia Concurrent with Mitral Stenosis and Tricuspid Valve Dysplasia in a Dog (개에서 승모판 이형성증과 병발한 승모판 협착증 및 삼첨판 이형성증의 심초음파적 특징 1례)

  • Choi, Soo-Young;Lee, Jung-Woo;Lee, Young-Won;Choi, Ho-Jung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.101-104
    • /
    • 2015
  • A 4-years-old, intact male Golden retriever dog was presented with abdominal distension and dyspnea. Physical examination revealed arrhythmia and cardiac murmur. Generalized cardiomegaly, pleural effusion and ascites were shown on thoracic and abdominal radiographs. Two-dimensional echocardiography revealed abnormal mitral and tricuspid valve motion, mitral and tricuspid regurgitation, left ventricular eccentric hypertrophy and left atrial dilation. Color-flow Doppler imaging revealed turbulent flow extending into the left ventricle during diastole from the mitral valve orifice, and into the left atrium during systole. Spectral Doppler recordings revealed highly increased early diastolic mitral valve inflow and prolonged pressure half-time of mitral inflow. Based on the echocardiographic examination, the diagnosis was made as the mitral valve dysplasia concurrent with mitral valve stenosis and tricuspid valve dysplasia.

Biomechanical Analysis of Lower Limb Joint Motions and Lumbar Lordosis during Squat and Stoop Lifting (쪼그려 들기와 허리 굽혀 들기 시 하지관절 움직임과 요추 전만에 관한 생체역학적 분석)

  • Hwang, Seon-Hong;Kim, Young-Eun;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.107-118
    • /
    • 2008
  • In this study, lower extremity joint kinematics and kinetics and lumbar lordosis were investigated for two different symmetrical lifting techniques(squat and stoop) using the three-dimensional motion analysis. Twenty-six male volunteers lifted boxes weighing 5, 10 and 15kg by both squat and stoop lifting techniques. There were not significant differences in maximum lumbar joint moments between the two techniques. The hip and ankle contributed the most part of the support moments during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the khee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and semitendinosus were found to be important for straightening up during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. In conclusion, the knee extension which is prominent kinematics during the squat tilling was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).

Vibration Analysis of Separation Screen in a Recycling Plant of Moisturized Construction Wastes (고함수율의 건설폐기물 폐 토속에 포함된 이물질 선별을 위한 분리스크린의 진동해석)

  • Moon, Byung-Young;Bae, Hyo-Dong;Kwag, Kwang-Hun;Bae, Kee-Sun;Song, Ha-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.526-533
    • /
    • 2008
  • In this study, theoretical super screen vibration analysis has been carried out to predict the dynamic characteristics of interactive waste particles. In order to approach these problems, it is necessary to have a fundamental understanding the screening process and the process of both the remaining and the passed material on a screen with several interacting screen planes based on Soldinger(1999) was discussed. Here, the vibrating screen is composed of three assemblies such as screen, wastes guide, and supported screen as shown in Fig. 1. This model is regarded vibrator as the system of screen fixed tilt plates. Then materials(or particles) of different size is to be separated by using the eccentric vibrator and classifying tilt plates. As well moisturized construction wastes is more efficient to separate than moisture-less it. In processing separate mechanism, the more materials is light, the more staying time is long. Thus much lighter construction wastes(wood, Styrofoam, etc) and heavier materials are separated by staying time delay in a super screen. The design results, separation screen were able to know that small and larger particles are conspicuous difference each motion character according to trajectory particles, and small particles raise the probability in classifying tilt plates.

Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle (보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석)

  • Hyeong, Joonho;Roh, Jongryun;Kim, Sayup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.991-996
    • /
    • 2017
  • Gait stability is partly characterized by an extended stance phase that comprises 60 of the gait % cycle. In this study, a gait pattern was employed for a crank drive system that allows for stable lower limb kinematics during stand-up cycling. A quick return mechanism was applied to the crank system to allow for a slow rotation of the crank during the stance phase and for a quick return during the swing phase. Design parameters for the quick return crank mechanism were defined, and kinematic simulations were performed to understand the behavior of the mechanism. To evaluate the design, an experimental instrument was fabricated, and the cycling motion was analyzed. The results indicated that this new drive system can stabilize the center of mass of the user. This study can contribute to the development of a stand-up bicycle that allows for more comfortable leg kinematics.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment (엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계)

  • Kim, Byeong Jun;Boo, Kwang Suk;Kim, Heung Seob
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

Solar motion described in the Richan lizhi(日躔曆指), the Rìchan lifa(日躔曆法) and the Richan biao(日躔表) of the Kangxi reign treatises on Calendrical Astronomy, Lixiang kaocheng (曆象考成) (《역상고성》의 <일전역지>, <일전역법>, <일전표>에 기록된 태양의 운동)

  • choe, Seung-Urn;Kang, Min-Jeong;Kim, Seulki;Kim, Sukjoo;Suh, Wonmo;Lee, Jinhyon;Lee, Yong Bok;Lee, Myon U;Yang, Hong-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.39.2-40
    • /
    • 2021
  • 본 연구는 《숭전역서》 혹은 《서양신법역서》 이후, 하국종(何國宗, ? -1767)과 매각성(梅殼成, 1681-1764) 등에 의해 기술된 《역상고성》 상하편에 실린 <일전역리>, <일전역법>, <일전표>를 바탕으로 태양의 운동을 자세히 살펴보았다. 《숭전역서》 <일전역리>에서는 티코브라헤의 혼합모형을 기반에 두었지만 태양의 운동은 톨레미(Ptolemy)의 이심모델(Eccentric model)과 차이가 없다. 그러나 <일전표>에 수록된 가감차의 값은 이퀀트모델(Equant model)을 기초로 한 것이었다. 《신법산서》 <일전표>에는 이 모델에 의한 계산법을 소개하고 있으나 계산의 오류를 범하였다. 태양 실측과의 어긋남, 태양의 운동을 기술하는 여러 상수들이 다시 얻어짐에 따라 《역상고성》 상하편의 <일전역리>에서는 코페르니쿠스 모델을 기초로 한 본륜-균륜 모델을 채택하고 있다. 이 모델을 기초로 한 가감차 계산 과정에 조금의 수학적 오류가 있지만 계산 결과에는 영향을 미치지 않았다. 그리고 <일전표>에 제시된 가감차값은 바로 이 모델을 기반으로 한 값들이다. <일전역법>에 제시된 동지 이후 태양의 실제 경도를 구하는 방법이 매우 구체적이다. 이 방법은 이후 《역상고성후편》의 <일전역법>도 그대로 따르고 있는데 다만 《역상고성후편》의 <일전역리>는 케플러의 타원모델을 채택하고 있다. 태양의 황경을 구하는 현재의 방법과 비교해보면 《역상고성》 <일전역법>에서는 그 기준이 동지이고 현재의 방법은 춘분점이라는 것만 다를 뿐이고, 방법은 동일하다. 다만 필요한 상수 값들이 시간에 따라 아주 느리게 변하기에 이 값들의 보정이 필요할 뿐이다. 이 방법은 조선에서 집필된 《세초류휘》, 《시헌기요》, 《추보속해》, 《추보첩례》에도 사용한 모델과 상수들은 다르지만 동일한 방법을 요약하고 있다.

  • PDF

Effect of Vibratory Stimulation on Recovery of Muscle function from Delayed Onset Muscle Soreness

  • Koh, Hyung-Woo;Kim, Cheol-Yong;Kim, Gye-Yoep;Kim, Kyung-Yoon;Kim, Soo-Geun;Lee, Hong-Gyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • This study was designed to investigate the effect of vibratory stimulation on recovery of muscle function from delayed onset muscle soreness (DOMS). Volunteers performed 3 set of 70 % maximal voluntary eccentric muscle contraction and induced DOMS. volunteers were allocated to one of three treatment group after DOMS : group I (control), group II (ultrasound), group III (vibration). Maximal Voluntary Isometric Contraction (MVIC), Visual Analog Scale (VAS), Range Of Motion (ROM), Root Mean Square (RMS), Median frequency (MDF), Blood Serum Creatine Kinase (CK), Lactic dehydrogenase (LDH) were recorded at baseline, and 24, 48, 72 hours post-exercise. In MVIC measurement, there was a statistically significant difference in group III compared to group I (p < .05). In VAS measurements, there were a statistically significant difference in group II and III compared to group I (p < .05). In ROM measurement, there was a statistically difference in group II and III compared to group I (p < .05). In Muscle Volume with Ultrasonography measurement, there was no statistically significant difference in any groups (p > .05). In RMS and MDF measurement, there were a statistically significant difference in group II and III compared to group I (p < .05). In Blood samples of CK and LDH measurements, There were no statistically significant difference in any groups (p > .05). From the above result, Vibratory stimulation had a positive effect on recovery of muscle function from delayed onset muscle soreness. Further studies should be undertaken to ascertain the more effectiveness of vibratory stimulation and may be a promising treatment modality.

Effects of Shoulder Muscle Strength on Terminal Range by Humeral Head Retroversion (상완골 후경각이 가동역에 따른 견관절 근력에 미치는 영향)

  • Park, Si-Young;Lee, Dong-Jun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.549-554
    • /
    • 2010
  • Increased external rotation and decreased internal rotation have been noted to occur progressively in the throwing shoulders of baseball pitchers. The purpose of this study was to provide descriptive data for terminal range eccentric antagonist/concentric agonist shoulder muscle strength in collegiate baseball pitchers with humeral head retroversion diagnosed through MRI. The dominant and non-dominant shoulders of 9 asymptomatic baseball pitchers were tested through a range of 20 degrees of external rotation to 90 degrees of internal rotation using the Biodex system 3 isokinetic dynamometer at speeds of $90^{\circ}/s$ and $180^{\circ}/s$. Differences between the dominant and non-dominant shoulders were assessed using the paired samples t-test. Total range of motion, measured at $90^{\circ}$ of glenohumeral abduction, was $180.1^{\circ}$ for dominant shoulders and $183.7^{\circ}$ for non-dominant shoulders. Humeral head retroversion measured $47.6{\pm}6.1^{\circ}$ in dominant and $37.8{\pm}5.3^{\circ}$ in non-dominant extremities. The mean internal rotator concentric contraction (IR-Con) showed a significant difference compared to $31.5{\pm}5.1$ (Nm) in dominant and $38.7{\pm}5.2$ (Nm) in non-dominant shoulders at $180^{\circ}/s$ (p<0.05). The mean external rotator eccentric contraction (ER-Ecc) showed a significant difference compared to $20.3{\pm}4.7$ (Nm) in dominant and $25.1{\pm}3.7$ (Nm) in non-dominant shoulders at $90^{\circ}/s$ (p<0.05). There is a pattern of increased external rotation and decreased internal rotation in the dominant extremity that significantly correlates with an increase in humeral retroversion.