• Title/Summary/Keyword: Eccentric Load

Search Result 225, Processing Time 0.031 seconds

An Experimental Study on Behavior of Box Girder considering Middle Diaphragm Shapes (중간격벽의 형상을 고려한 상자형 거동에 대한 실험적 연구)

  • 정희효;이승열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.501-510
    • /
    • 2002
  • The middle diaphragm of box girder is to prevent the deformation of the cross section of box girder, to distribute load produced at upper flange onto the both sides of web. But if inner space of box girder is barred by the middle diaphragm, it is impossible to use in inner space of box girder and it is felt constraint on maintenance-management. The effect of middle diaphragm of box girder is intended to be expressed by the stiffness of diaphragm in comparing the diaphragm with opening of box girder with diaphragm without opening of box girder through the experiment.

COMPRESSIVE STRENGH OF FRP-CONFINED CONCRETE COLUMNS UNDER THE ECCENTRIC LOADS

  • H.R. Salehian;M.R. Esfahani
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.978-982
    • /
    • 2009
  • In recent years, due to some excellent properties of fiber reinforced polymer (FRP) composites, the use of FRP sheets for strengthening the weak concrete columns have become increasingly popular. Axial loading is the basic assumption in most of the models that are presented for estimating the compression strength of confined concrete columns. However a large number of weak concrete columns in the bending frames are under the combination of both axial and flexural loads. This paper presents the results of an experimental study on the effects of eccentricity of load on the compressive strength of concrete columns confined by FRP sheets. This research shows that the eccentricity of compression load affects decreasingly the performance of confining FRP jacket in confined columns.

  • PDF

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

Development of an Improved Point Load Apparatus (개량형 점하중강도시험기의 개발)

  • Kim, Yong-Phil;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.473-478
    • /
    • 2009
  • The accuracy of point load apparatus is depend on point to point coaxial fitting. Also, the estimation of applied point load using the pressure gauge frequently lead to erroneous results. An improved point load apparatus has been developed in this study by mounting linear bearing on polished support rod, and eccentric error of point to point axis has been sustained less than 0.1 mm even under series of extreme work load conditions. Two digital displacement gauges are attached to measure the distance from point to point with sample specimen. A load cell mounted at the end of upper conical platen measure the applied net load on sample instead of preassure gauge. Total of 107 point load tests has been achieved to assure the quality and performance of developed apparatus. This exercise turned out to be successful.

Eccentric Axial Load Test for Concrete-Filled Tubular Columns Encased with Precast Concrete (프리캐스트 콘크리트에 의해 피복된 콘크리트충전 강관기둥의 편심압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Kim, Sung Bae;Park, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2014
  • In this paper, concrete-filled steel tubular columns encased with precast reinforced concrete were studied. Four eccentrically loaded columns and a concentrically loaded column were tested to investigate the axial load-carrying capacity. The test parameters were the use of fiber reinforcement for cover concrete, eccentricity, column length, and lateral reinforcement. The maximum axial loads of the specimens agreed with the nominal strengths predicted by KBC 2009. However, in some specimens, the load carrying capacity quickly decreased after the peak strength due to spalling of the cover concrete.

Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure (전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계)

  • Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Development of Standard Test Specification for Hiking Stick (등산스틱 시험규격 개발 연구)

  • Kil, S.K.;Kim, J.H.;Kim, T.W.;Lee, S.C.;Hwang, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • In this paper, we proposed the standard test specification for safety and function of hiking stick for the elderly. We have concluded nine factors representing specification of hiking stick through analysis of hiking patents and research papers, products survey of business market, case studies for damaged hiking stick and expert surveys. To test the factors, we designed three different kinds of apparatus to examine twist resistance, stick and tip durability and stick straightness. The sample of hiking sticks purchased from market based on Naver sales ranking top to fifteenth. As a result, we concluded six-standard test specification based on eccentric load, adjustable parts load, hand strap load, basket load, tip load and pull load of hiking stick.

  • PDF

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Critical Loads of Eccentrically Loaded Struts with Thin-Walled Open Sections (편심하중을 받는 박벽개단면 압축재의 임계하중)

  • 나영진;이수곤
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-140
    • /
    • 1996
  • Single angle or channel with thin-walled open section can be used as compression member for example as web member in truss. In this case the inevitable eccentricity due to fabrication is commonly neglected in structural design. However eccentricity effect should be considered in the member design, especially in case of compression member. The critical loads of compression members that buckle by twisting or by a combination of bending and twisting are to be determined by solving governing differential equations. In this paper, the investigations are limited to the rolled channels([), equal-leg angles(L), lipped channels(C) and the applied loads are assumed to have some eccentricities.

  • PDF