• Title/Summary/Keyword: Ebb and flow

Search Result 104, Processing Time 0.034 seconds

Effect of Cultural System and Sonic Strength of Nutrient Solution on the Growth of Dendrobium (Dendrobium phalaenopsis ) Seedlings (양액재배 시스템 및 양액농도가 덴파레(Dendrobium phalaenopsis) 유묘의 생장에 미치는 영향)

  • 정순주;이범선;안규빈
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 1997
  • This study was conducted to evaluate the optimum hydroponic system and nutrient solution for shortening the early growth period and quality improvement of dendrobium ( Dendrobium Phalaenopsis) seedlings. Dendrobium seedlings with 3 to 4 leaves were transplanted in the deep flow technique(DFT) system, aeroponic system, and ebb and flow system with different concentration of balanced nutrient solutions recommended by the Japanese Horticultural Experiment Station. Growth characteristics of shoot and root were recorded and evaulated among treatments. For autumn cultivation, plant height was the longest at the DFT system with quarter concentration of nutrient solution, where aeroponic system with half concentration of nutrient solution. Aeroponic system stimulated the root growth but fresh weight was observed in the plots of DFT system. For spring cultivation, pH values increased up 7.5 at the DFT and aeroponic system, where EC values did not fluctuate regardless of cultural system. Ebb and flow system showed the best result in the growth of plant followed by BFT system and aeroponic system. Higher concentration of nutrient solution within this range of treatment was recommended for the growth promotion of leaf length and width in DFT system. In conclusion, growth responses differed depending on the cultural system, concentrations of nutrient solutions and duration of cltivation.

  • PDF

Tidal Exchange Of Sea Water In Gamag Bay (가막만의 해수교환)

  • Lee, Myeong-Cheol;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.17 no.1
    • /
    • pp.12-18
    • /
    • 1982
  • Tidal exchanges of sea water are studied by using drogue experiments and tidal current measurement data in Gamag Bay which has two channels. At the spring tide, the volume of tidal transport in the bay was estimated to be 46∼52% of the total volume of sea water in Gamag Bay, 7.1 10$\^$8/㎥. The tidal transport through the wide channel occupies 87% of the total tide transport of the bay. Residual current was deduced to flow north-northeastward at the rate of 3.254 10$\^$5/㎥ per tidal cycle. the tidal exchange of the sea water during the flood flow was estimated to be approximately 26% of the tidal transport, while that during the ebb flow was 41%. The tidal exchange through the wide channel during the flood flow occupies 77% of total tidal exchange of the bay through both channels, whereas that during the ebb flow does 88%. The diffusion coefficient of 2.08∼ 2.30 10$\^$7/$\textrm{cm}^2$/sec at the narrow channel was greater than that at the wide channel which was 1.2∼2.8 10$\^$6/$\textrm{cm}^2$/sec.

  • PDF

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

Studies on the Natural Mortality of the Young Short Necked Clam, Tapes japonica-I. Seaonal Variation of the tidal Temperature, Sainity , and the Effect of Overflowing Fresh Water on the Subterranean Salinity of the Tidal Flat at Low Tide (바지락 치패의 폐사에 관한 연구-I 간척지의 간출시에 있어서의 온도, 염분변화와 유입하천수의 지하염분에 미치는 영향)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1966
  • Frequently , large masses of the young short necked clam, Tapes japonica , die at their tidal flats in summer and this phenomenon has not been explained clearly. The purpose of the present investigation is to study the thermal condition and the chlorinity level of tidal flats in which the young clam appears to be injured. A study is also mad efor the burrowing organism in the lower layer of the esturay over which the fresh water flow during the low tide. Observation are made at five places of the tidal flat near Ikawazu Fixheries Laboratory of Tokyo University during the ebb and flow tide period of the spring tide. The diurnal and monthly changes of tidal temperatures and chlorinities are measured. Results of the study are ; 1. The surface temperature of the tidal flat increases with the ebb tide, reaches the highest between 12-14PM, and gradually decreases thereafter. The temperatures of tidal flat below 5 and 10 cm increase gradually until the flow tide reaches the surface. 2. At the spring tide in summer , the diurnal change of surface of the tidal flat temperature is very extensive ; it reaches 37-39$^{\circ}C$ in August. At the depths of 5 and 10 cm the temperature remains at 33 $^{\circ}C$ and 31$^{\circ}C$ , respectively. 3. The chlorinity of the tidal flat is higher during May through June and lower July through August, and this seems to be related to the amount of rainfall. 4. The chlorinity of the surface of tidal flat increases slightly during the ebb and flow tide periods. The observed higher chlorinity of surface of the tidal flat was 18.82% Cl. 5. At near the esturay, the fresh water that overflows the tidal flat affects the chlorinity of the surface but no such influence to the depth of the flat. 6. From above observations, it is assumed that the young short necked clam in the tidal flat could be exposed to the severe change of environmental conditions. The high temperature of the tidal flat in summer and the low chlorinity of it at flood period may be considered as the change in environment.

  • PDF

Analysis of Tidal Asymmetric Characteristics in the Muan Bay (무안만의 조석비대칭적 특성 분석)

  • Kang, Ju Whan;Kim, Yang Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.170-179
    • /
    • 2020
  • Tidal asymmetry would occur owing to shallow water tides at the Western Coast of macro tidal area. Especially, as ebb dominance of Mokpo coastal zone is known as the most prominent in Korea, it had been studied by domestic researchers. The cause of ebb dominance in Mokpo area is considered due to extensive inter-tidal zone in Muan Bay, and this has been studied based on amplification ratio, relative phase and skewness of tide/tidal flow curves in order to analyze qualitative tidal asymmetry. Furthermore, it was possible to figure out tidal characteristics with the difference of tidal amplitude and phase with Mokpo Harbor by observing the tide for 15 days in Muan Bay, which showed 40 minutes shorter ebbing time than at Mokpo Harbor. In addition, tidal flow prediction data in Mokpo North Harbor and Mokpo-Gu were analyzed. Meanwhile, the basis regarding qualitative interpretation of bed sediment and suspended sediment was provided by examining the qualitative changes in tidal asymmetry for spring-neap tidal cycle through the PCA/SWA indices. In addition, by examining long-term changes of ebb dominance in Mokpo Port, tidal characteristics of the past, present and future in this area, which is related to tidal asymmetry, is also provided.

Plant Growth and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'New Alter') and Nutrient Accumulation of Growing Media with Growth Stage at Different Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and flow 저면관수 시스템에서 칼랑코에(Kalanchoe blossfeldiana 'New Alter') 생육단계별 배양액 농도에 따른 생육, 양분흡수 및 배지 양분 집적)

  • Noh, Eun-Hee;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.973-979
    • /
    • 2010
  • The objective of this study was to determine the effect of electrical conductivity (EC) of nutrient solution on the growth, nutrient uptake of potted kalanchoe plants ($Kalanchoe$ $blossfeldiana$ 'New Alter') and the nutrient accumulation at the growing media with growth stage in ebb and flow subirrigation systems. Significant differences in leaf area, plant height, and dry weight of the plants were found among the different ECs of nutrient solution of 0.8, 1.6, 2.4, and $3.2dS{\cdot}m^{-1}$. Particularly the difference in plant growth became significantly greater from 5 weeks after treatment. The overall growth was the highest at EC $1.6dS{\cdot}m^{-1}$. Leaf area, plant height, and dry weight were maintained higher when EC increased to $2.4dS{\cdot}m^{-1}$, but rapidly decreased after EC $3.2dS{\cdot}m^{-1}$. The uptake of NO3-N was the greatest while that of $Mg^{2+}$ was the lowest at EC $1.6dS{\cdot}m^{-1}$, even though small differences were found among macro elements. The EC at the top layer of the growing media was 1 to 3 times higher than that at the bottom layer. Nutrient accumulation was accelerated in both the top and bottom layers with growth stage. At EC $3.2dS{\cdot}m^{-1}$, the growth of the plants was suppressed due to higher nutrient accumulation at the growing media. From the results, the strength and composition of nutrient solution should be determined by considering nutrient accumulation at the growing media in addition to EC of nutrient solution in ebb and flow subirrigation systems.

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

The Variation of Current by the Building of Artificial Upwelling Structure ( I ) (인공용승구조물 설치에 의한 유동변화 ( I ))

  • Kim, Dong-Sun;Hwang, Suk-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.301-306
    • /
    • 2006
  • In order to estimate the characteristics of water movements around artificial upwelling structure, current measurements were carried out along lines E-W and S-N on May 4th(neap tide} and May 30th(spring tide), 2006. In the study area, southeastward flow was dominant during the field observations, and the pattern of water movement in the upper layer above 30m depth was different from that in the lower layer below 30m depth Vertical flow(w-component} around the artificial structure area and western area was shown to be upward flow, but downward flow occurred in the southern, northern and eastern parts at the neap tide. At the spring tide, the ebb current along E-W line showed upwelling flow in the eastern part and western area and showed upwelling flow near the artificial structure area and downwelling flow far away that one. At the spring tide, upward flow was dominant along S-N line during the flood current Volume transport by upward flow was higher than that by downward flow. Volume transport by upward flow during ebb of neap tide was greater than during flood current of neap tide, but was reverse at the spring tide.

  • PDF

Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea (금오도-안도 협수로 해역의 조류 및 조석잔차류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

Flow and Diffusion of Lower Han River Considering Tidal Elevation in Yellow Sea (서해안 조위를 고려한 한강 하류부의 흐름 및 확산)

  • Seo, Il-Won;Song, Chang-Geun;Lee, Myung-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.199-202
    • /
    • 2008
  • It is well-known fact that tidal difference between the ebb and flow in Yellow Sea is about 9 m so that it has largest value in the world. This wide range of tide level enables Yellow Sea water to intrude into main stream of Han River. However, the study of the tidal reach of Han River has not been carried out thoroughly since North and South Koreas share this region so that topography data and physical measurement are lacking. In this study, to examine the reverse flow and dispersion behavior by tidal effect at the tidal reach of Han River, 2-D river analysis models were applied. RMA-2 was applied to calculate the horizontal velocities and water surface elevation. With the results of velocities and water depth, RAM4, which is 2-D advection-dispersion model based on FEM was simulated to analyze the horizontal transport behavior of BOD.

  • PDF