• Title/Summary/Keyword: East Sea coast

Search Result 685, Processing Time 0.026 seconds

An Analysis of Subtidal Macroalgal Community Structure Using a Modified Photo Quadrat Method (수정된 사진방형구법을 이용한 조하대 해조류의 군집구조 분석)

  • Kim, Young-Dae;Park, Mi-Seun;Moon, Tae-Seok;Ahn, Jung-Kwan;Kim, Su-Ji;Kim, Young-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.298-307
    • /
    • 2011
  • The species composition and distributions of subtidal marine algae on the east coast of Korea were studied. We examined all species found in permanent quadrats at three depths (3 m, 5 m and 10 m) at Sacheon between October 2008 and December 2009. Coverage and frequency data were collected monthly via underwater photography and analyzed using a modified photo quadrat method. Of the 82 species identified, 10 were chlorophytes, 21 were phaeophytes, 50 were rhodophytes, and one was a seagrass. The largest number of species (59) was found 10 m deep, while the fewest (39) species were present at 5 m. A total 17 species (two green, five brown, and 10 red algae) occurred at all three depths. The vertical distribution of the study site was characterized by the melobesioidean algae, Ulva pertusa, Sargassum confusum, Phyllospadix iwatensis, and Codium arabicum at 3 m deep, melobesioidean algae and U. pertusa at 5 m deep, and Corallina pilulifera, Prionitis cornea, Chondracanthus tenellus and melobesioidean algae at 10 m deep. Given that coralline algae such as melobesioidean algae and C. pilulifera play important roles in coastal ecosystems, thorough studies on the spatial and temporal variations of coralline algae and the dynamics of marine algal communities on the east coast of Korea are now required.

Numerical study for classifying generation types of rip currents at the beaches of the East Sea coast (수치모의를 통한 동해안 해수욕장의 이안류 발생 형태 분류 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.645-655
    • /
    • 2022
  • Recently rip currents are frequently observed in the summer at the beaches located along the East Sea coast. To understand the generation types of rip currents occurred at the Ease Sea beaches, numerical simulations of rip currents over the topographies of the Sokcho, Naksan, Gyeongpo, Mangsang beaches were performed by using a Boussinesq-type wave and current model, FUNWAVE. The offshore and nearshore topographically-controlled rip currents and the transient rip currents were well reproduced due to the alongshore non-uniformities involving the phase interaction effects. This study looked over the generation types of rip currents to occur at the beaches with complicated field bathymetries.

Temperature Variation in the Ulleung Warm Eddy during 2013~2015 (2013~2015년 울릉 난수성 소용돌이의 수온변동)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Based on the Expendable Bathythermograph (XBT) observation and serial oceanographic observation of National Institute of Fisheries Science (NIFS) during July 2013 to July 2015, we examined the temperature variation in the Ulleung Warm Eddy (UWE) in the East Sea. The UWE was always shown during the observation periods even though it was not the whole shape. The coefficient of variation (CV) was largest in the depth of 250 m at the side of the east coast of Korean Peninsula with $3{\sim}4^{\circ}C$ in temperature. CV of the horizontal distribution at 250 m depth was also largest in the region biased along the east coast of Korea. The warm eddy moved not only to the east-west direction but also to the north-south direction in the viewpoint of horizontal distributions of temperature. This region between the Korean Peninsula and Ulleung island also is the passage of the East Korean Warm Current. This means that interaction between the East Korean Warm Current and periphery of warm eddy makes large in the variation of movement along the east coast of Korean Peninsula. The largest variation of temperature at 250 m depth seemed to be significantly correlated with the East Sea Intermediate Water (ESIW) underlying Ulleung Warm Eddy. It is suggested that the interaction between the ESIW and UWE is active in the mid-depth along the periphery of UWE.

Quantifying of the Persistent Periods of the Positive and Negative Sea Surface Temperature Anomalies at the Coastal Areas of the Korean Peninsula (한국연안 이상고수온과 저수온의 지속성 기간의 정량화)

  • 서영상;황재동;장이현;강용균
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 2001
  • The magnitudes of sea surface temperature (SST) anomalies at 13 coastal stations along the Korean peninsula in the summer and winter for the past 29years (1969-1997) are more larger than those in the spring and autumn. The periods of positive SST anomalies (negative SST anomalies) longer than 1$^{\circ}C$ were 75(74.5) months in the eastern coast of Korea, 47.8(51.6) months in the southern coast of Korea and 69.5(69.8) months in the western coast of Korea during the past 348 months (1969-1997). The predominant periods of the low-pass filtered monthly SST anomalies are 3 years or 13 months, even another predominant period is 24 months. The spatial variation of SST anomalies were confined by regional seas of the Korean peninsula, such as the East Sea, the South Sea and the West Sea itself.

  • PDF

Sea-Level Trend at the Korean Coast

  • Cho, Kwangwoo
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1141-1147
    • /
    • 2002
  • Based on the tide gauge data from the Permanent Service for Meau Sea Level (PSMSL) collected at 23 locations in the Korean coast, the long-term sea-level trend was computed using a simple linear regression fit over the recorded length of the monthly mean sea-level data. The computed sea-level trend was also corrected for the vertical land movement due to post glacial rebound(PGR) using the ICE-4G(VM2) model output. It was found that the PGR-corrected sea-level trend near Korea was 2.310 $\pm$ 2.220 mm/yr, which is higher than the global average at 1.0∼2.0mm/yr, as assessed by the Intergovernmental Panel on Climate Change(IPCC). The regional distribution of the long-term sea-level trend near Korea revealed that the South Sea had the largest sea-level rise followed by the West Sea and East Sea, respectively, supporting the results of the previous study by Seo et al. However, due to the relatively short record period and large spatial variability, the sea-level trend from the tide gauge data for the Korean coast could be biased with a steric sea-level rise by the global warming during the 20th century.

Estimation of Mean Surface Current and Current Variability in the East Sea using Surface Drifter Data from 1991 to 2017 (1991년부터 2017년까지 표층 뜰개 자료를 이용하여 계산한 동해의 평균 표층 해류와 해류 변동성)

  • PARK, JU-EUN;KIM, SOO-YUN;CHOI, BYOUNG-JU;BYUN, DO-SEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.208-225
    • /
    • 2019
  • To understand the mean surface circulation and surface currents in the East Sea, trajectories of surface drifters passed through the East Sea from 1991 to 2017 were analyzed. By analyzing the surface drifter trajectory data, the main paths of surface ocean currents were grouped and the variation in each main current path was investigated. The East Korea Warm Current (EKWC) heading northward separates from the coast at $36{\sim}38^{\circ}N$ and flows to the northeast until $131^{\circ}E$. In the middle (from $131^{\circ}E$ to $137^{\circ}E$) of the East Sea, the average latitude of the currents flowing eastward ranges from 36 to $40^{\circ}N$ and the currents meander with large amplitude. When the average latitude of the surface drifter paths was in the north (south) of $37.5^{\circ}N$, the meandering amplitude was about 50 (100) km. The most frequent route of surface drifters in the middle of the East Sea was the path along $37.5-38.5^{\circ}N$. The surface drifters, which were deployed off the coast of Vladivostok in the north of the East Sea, moved to the southwest along the coast and were separated from the coast to flow southeastward along the cyclonic circulation around the Japan Basin. And, then, the drifters moved to the east along $39-40^{\circ}N$. The mean surface current vector and mean speed were calculated in each lattice with $0.25^{\circ}$ grid spacing using the velocity data of surface drifters which passed through each lattice. The current variance ellipses were calculated with $0.5^{\circ}$ grid spacing. Because the path of the EKWC changes every year in the western part of the Ulleung Basin and the current paths in the Yamato Basin keep changing with many eddies, the current variance ellipses are relatively large in these region. We present a schematic map of the East Sea surface current based on the surface drifter data. The significance of this study is that the surface ocean circulation of the East Sea, which has been mainly studied by numerical model simulations and the sea surface height data obtained from satellite altimeters, was analyzed based on in-situ Lagrangian observational current data.

Mean Flow and Variability at the Upper Portion of the East Sea Proper Water in the southwestern East Sea with APEX Floats

  • Lee, Ho-Man;Kim, Tae-Hee;Kim, Ju-Ho;Youn, Yong-Hoon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-150
    • /
    • 2003
  • 16 APEX floats, autonomous profiling floats deployed as part of the Array for Real-time Geostrophic Oceanography (ARGO) program, are used to understand the currents at 800 m underwater in the southwestern East Sea. The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed range 0.2 to 4.29 cm/sec and the variability in the north in the DB is stronger than that in the south. The eddy kinetic energy is found a few $cm^{2}$ $S^{-2}$. In the UB, cyclonic flows from 0.3 - 1.6 cm/see are observed with the bottom topography.

  • PDF

Water Distribution at the East Coast of Korea in 2006 (2006년 동해 연안의 수괴 분포)

  • Choi, Yong-Kyu;Jeong, Hee-Dong;Kwon, Ki-Young
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.399-406
    • /
    • 2010
  • Based on the Results of Annual Monitoring Report of Korean Marine Environment in 2006, it was shown that the coastal area of the East Sea around Korean peninsula could be clearly divided into two parts: the area of upwelling and the North Korean Cold Current. In the upwelling area, the chlorophyll-a and nutrients were increased by the influence of the decrease of temperature and the increase of salinity. These mean that the appearance of cold water due to the upwelling causes nutrient rich water and also resulted in the high productivity.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Investigation on the Wave Power Resources on the East Coast of Korea Based on Field Measurement Data (실측자료에 근거한 동해안 파력 부존량 검토)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Lee, Dal-Soo;Lee, Dong-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.630-634
    • /
    • 2007
  • In the past, the use of wave energy has mainly been focused on conversion of large wave energy resources in the far offshore areas. However, with the technological improvement of converting wave energy into electricity, the energy resources at much shallow waters are now considered as a site for possible installation of the devices that obtain energy from the waves. In this respect, the wave energy resources on the east coast of Korea, where the sea is milder than the open ocean, were investigated using the field measurement data obtained at three different locations along the coast. For all the locations, the wave power was greater in winter season, compared to summer season. The estimated wave power varied from 2 to 4.5 kW/m on average, depending on the measurement locations.

  • PDF