• Title/Summary/Keyword: East Sea coast

Search Result 685, Processing Time 0.025 seconds

Seasonal and Interannual Variability of the North Korean Cold Current in the East Sea Reanalysis Data (동해 재분석 자료에 나타난 북한한류의 계절 및 경년변동성)

  • Kim, Young-Ho;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • Analyzing the results of East Sea Regional Ocean Model using a 3-dimensional variational data assimilation scheme, we investigated spatial and temporal variability of the North Korean Cold Current (NKCC) in the East Sea. The climatological monthly mean transport of the NKCC clearly shows seasonal variation of the NKCC within the range of about 0.35 Sv ($=0^6m^3/s$), which increases from its minimum (about 0.45 Sv) through December-January to March, decreases during March and May, and then increases again to the maximum (about 0.8 Sv) in August-September. The volume transport of the NKCC shows interannual variation of the NKCC with the range of about 1.0 Sv that is larger than seasonal variation. The southward current of the NKCC appears often not only in summer but in winter as well. The width of the NKCC is about 35 km near the Korean coast and its core is located under the East Korea Warm Current. The North Korean Cold Water (NKCW), characterized by low salinity and low temperature, is located both under the Tsushima Warm Water and in the western side of the maximum southward current of the NKCC that means the NKCC advects the NKCW southward along the Korean coast. It is revealed that the intermediate low salinity water, formed off the Vladivostok in winter, flows southward to the south of $37^{\circ}N$ through $2{\sim}3$ paths; one path along the Korean coast, another one along $132^{\circ}E$, and the middle path along $130^{\circ}E$. The path of the intermediate low salinity varies with years. The reanalysis fields suggest that the NKCW is advected through the paths along the Korean coast and along $130^{\circ}E$.

The cold water mass along the southeast and east coasts of Korea in 2016-2017

  • Choo, Hyo-Sang
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.243-259
    • /
    • 2021
  • The spatial and temporal behaviors and fluctuations of the cold water that appeared in the South East Sea and the East Sea coast from 2016 to 2017 were investigated. The water temperature drop was large in the east coast from April to June and the southeast coast from July to September, and the temperature drop period was longer in the southeast coast. The water temperature fluctuated sensitively to the wind direction, and it gradually decreased in the southwest wind but rose as if jumping in the northeast wind. Wind stress and surface water temperature had an inverse correlation, which was larger in Bukhang-Idukseo, and decreased toward the north of Guryongpo. The cold water appeared mainly in Geojedo-Pohang after 1 to 2 days when the southwest wind was strong, but when the wind became weak, it shrank to the Idukseo (Ulgi-Gampo) and extended into the open sea in a tongue shape. Cold water was distributed only in Samcheok-Toseong in mid-May, Idukseo-Guryongpo and Hupo-Jukbyeon-Samcheok from late May to mid-July, and Bukhang-Idukseo in August-September. The intensity of cold water was greatest in mid-August, and the center of cold water descended from the east coast to the southeast coast from spring to summer. The water temperature fluctuation was dominant at the periods of 1 d and 7-21 d. In wavelet spectrum analysis of water temperature and wind, wind speed increase-water temperature decrease showed phase difference of 12 h in 2 d, 18 h in 3 d, 1.5 d in 4-8 d, and 2-3 d in 8-24 d period. The correlation between the two parameters was large in Geojedo and Namhang, Bukhang-Idukseo, Guryongpo-Jukbyeon, and Samcheok-Toseong. Monitoring stations with high correlation in all periods were generally parallel to the monsoon direction.

Bivalve mollusks in Ulsan Bay (Korea)

  • Lutaenko, Konstantin A.
    • The Korean Journal of Malacology
    • /
    • v.30 no.1
    • /
    • pp.57-77
    • /
    • 2014
  • The bivalve molluscan fauna of Ulsan Bay, East Sea coast of Korea, is summarized, based on original and literature data. The fauna consists of 61 species belonging to 20 families. Seven species are identified only to genus level. Two species (Carditellopsis toneana (Yokoyama, 1922), Carditidae and Fulvia hungerfordi (G.B. Sowerby III, 1901), Cardiidae) are new records for the East Sea coast of Korea, and one species (Crenella decussata (Montagu, 1808), Mytilidae) is a new record for Korea. Biogeographically, Ulsan Bay's bivalve fauna is subtropical with a predominance of tropical-subtropical species, 21 species, or 39% of the total species number, subtropical, 14 species, or 26%, and subtropical-boreal (mostly subtropical-lowboreal), 11 species, 21%, totalling 86%. A remarkable feature of the Ulsan Bay fauna is the presence of tropical-subtropical species not found in Yeongil Bay but common in tidal flats and shallow waters of the Yellow Sea and the southern part of Korea. A cold water mass appearing off the southeast coast of Korea near Ulsan in summer seems responsible for the presence of boreal-arctic species in this area.

The Sea Level Slopes along the Korean Peninsular Coast based on the First Order Levelling Net in Korea (1등 수준망에 기준한 한반도 연안의 해면경사)

  • 이창경
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.35-41
    • /
    • 1993
  • The height differences in Mean Sea Level is an important factor in geodetic leveling net, because MSL is the reference datum for height. Geodesists and Oceanographers agree on the height differences in MSL in the east-west direction, but they disagree almost always on the north-south slope, each suspecting systematic errors in the leveling methods of the others. A promising method for determining this slope is comparison of MSL at the tidal station connected by geodetic leveling. The slopes of the sea surface along the coast of Korean Peninsular is estimated from conventional local MSL at the tidal station and bench mark height of first order leveling net in Korea. As a reference level surface, MSL at Inchon is chosen. The results indicate that sea level rises along coast of Korean Peninsular from south to north about 5.5 cm/latitude. In the east-west direction, sea level along East Sea coast stands about 5 cm higher than that along Yellow Sea coast. These are not invariable but provisional phenomena. It may become certain provided that the exact MSL is estimated.

  • PDF

Comparisons of Ocean Currents Observed from Drifters and TP/ERS in the East Sea

  • Lee, Dong-Kyu;Niiler, Pearn P.;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Ocean currents estimated from sea height anomalies derived from inter-calibrated TP/ERS are compared with daily mean currents measured with satellite-tracked drifters. The correlation coefficient between the geostrophic current from TP/ERS and surface current at 15 m depth from drifter tracks was found to be about 0.5. Due to the limitation of satellite ground tracks, small scale eddies less than 80 km are poorly resolved from TP/ERS. One of the interesting results of this study is that coastal currents along the eastern coast of Korea were well reproduced from sea height anomalies when the coastal currents were developed in association with eddies near the South Korean coast. The eddy kinetic energy (EKE) estimated from drifters, TP/ERS, and a numerical model are also compared. The EKE estimated from drifters was about 22 % higher than EKE calculated from TP/ERS. The pattern of low EKE level in the northern basin and high EKE level in the southern East Sea is shown in the EKE estimates derived from both the drifters and TP/ERS.

  • PDF

Review of Migration and Distribution of the Common Squid (Todarodes pacificus) in the East Sea and the Yellow Sea (동해와 서해의 살오징어(Todarodes pacificus) 회유 및 분포에 관한 고찰)

  • Kim, Yoon Ha;Jung, Hae Kun;Oh, Sung-Yong;Kim, Hyun Woo;Lee, Chung Il
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • This review paper discussed the decadal fluctuations in the catch of the common squid, Todarodes pacificus (T. pacificus) by focusing on migration and distribution patterns. Since 1980s, changes in T. pacificus catches were due to climate regime shift in Korean waters. Fluctuation patterns of catches were different between the East Sea and the Yellow Sea. Generally PDO (Pacific Decadal Oscillation) phase shows a negative correlation with strength of warm current to the East Sea. In 1980s when PDO was positive phase (+), T. pacificus catch was higher in the Yellow, but it was lower in the East Sea. In 1990s when PDO was negative phase (-), T. pacificus catch showed opposite trend compared with 1980s. Such spatial and decadal fluctuations of T. pacificus catch were due to its northward migration along with the warm current or southward movement against the current. In the East Sea, strong (weak) warm current period, the current path has been shifted toward the East Sea coast of Korea (central East Sea or the coast of Japan). It has a correlation with PDO. In the positive PDO phase (1980s), the fishing ground was located on the eastern side of Ulleungdo, whereas during negative PDO phase (1990s), they were situated near the southeastern coast of the Korean peninsula. In the 1980s, volume transport passing into the Yellow Sea increased, whereas volume transport in the East Sea decreased. This is one of major reason increasing T. pacificus larvae in the Yellow Sea.

Formative Age of Coastal Terraces and Uplift Rate in the East Coast of South Korea (우리나라 동해안의 해안단구 형성시기와 융기율)

  • Park, Chung-Sun;Kihm, You Hong;Nahm, Wook-Hyun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • This study tries to examine papers on coastal terrace in the East Coast of South Korea and to summarize formative age and elevation of the terrace. Spatial and temporal variations of uplift rate in the Coast based on absolute age published are also reviewed. The terrace in the middle part in the Coast from Goseong to Samcheok distributes in an elevation of 10-20 m and its formative age is MIS 5a. The terraces during MIS 5e and 7 develop on an elevation of 20-35 m and 60-80 m, respectively. The mid-southern part in the Coast from Uljin to Yeongil Bay has the terraces with elevations of 10-25 m and 25-45 m and their ages are MIS 5a or 5c and 5e, respectively. The terraces with elevations of 10-25 m and 30-45 m correspond to MIS 5a and 5e, respectively, in the southern part in the Coast from Homigot to Busan. Assuming that elevation of sea level during the formation of each terrace is the same as in the present time, uplift rates in the Coast range from 0.05 to 1.36 m/ky with an average of approximately 0.33 m/ky. The highest and lowest rates since MIS 5 are found in the Gyeongju (approximately 0.39 m/ky) and Pohang (approximately 0.19 m/ky) areas. With a consideration of elevation of sea level at that time, however, the middle, midsouthern and southern parts in the Coast show uplift rates of 0.16-0.28 m/ky, 0.20-0.36 m/ky and 0.24- 0.36 m/ky since MIS 5, respectively, suggesting that the southern part in the Coast has experienced relatively higher uplift rate.

Descriptive Analysis of Low Saline Water in Youngdeuk, the East Coast of Korea in 2010 (2010년 동해 영덕 연안의 저염수)

  • Choi, Yong-Kyu;Kwon, Kee-Young;Yang, Joon-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.379-387
    • /
    • 2012
  • In order to see the oceanographic conditions, the observations of aquaculture farm of ascidian in Youngdeuk, the east coast of Korea were conducted through 6 times-23 February, 6 April, 8 June, 19 August, 6 October and 20 December-in 2010. Surveys were conducted in 20 stations bimonthly using SBE 19 CTD instrument. The mixed layer depth (MLD) was deep in winter and shallow in summer. The cold water below $5^{\circ}C$ in temperature was occupied below thermocline through all season. The temperature was high in the southeastern area. The salinity was increased from the coast to the open sea. The halocline was distinct at 20 m depth in August and at 40 m depth in October. The lowest value of salinity was appeared at the depth of 10 m in October. In addition the value of precipitation minus evaporation denoted negative in October. These low saline water seemed to inflow to the coast from the open sea. Therefore the low saline water moved to the east coast of Korea. The EKWC may play an important role to convey the low saline water. It may affect the aquaculture farm along the coast as the mass mortality of ascidian. It needs to clarify the role and pathway of EKWC to transfer the low saline water along the east coast of Korea.

Circulation in the Southwestern East Sea (Japan Sea) in July 1993 Determined by an Inverse Method

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 1999
  • To estimate absolute transports by advection in the southwestern East Sea (Japan Sea), an inverse method was applied to CTD data obtained in July 1993. The relative velocities are calculated using the thermal wind equation. The inverse model was formulated to obtain a reference velocity based on the mass conservation in each of four vertical layers within a region enclosed by hydrographic sections and the coastal boundary. The flow patterns in the surface layer are clockwise and anti-clockwise in the regions south and northwest of Ulleung Island, respectively, and a strong northward flow appears in between them. In the second layer, the flow fields are generally weak. The inverse calculation yields the southward flow along the coast, and this suggests that the subsurface low salinity water in the Ulleung Basin is supplied by the southward transport along the east coast of Korea.

  • PDF

Effect of Typhoons on Contaminants Released from the Southern Sea around Fukushima of Japan (일본 후쿠시마 근해에서 방출된 오염물질에 미치는 태풍의 영향)

  • Hong, Chul-Hoon;Kim, Jinpyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.234-240
    • /
    • 2016
  • We examined the diffusion of contaminants released from the southern coast around Fukushima, Japan, during the passage of typhoons using a three-dimensional numerical model (POM) to track diffusing radioactivity (RA) released from the nuclear power plant at Fukushima following the accident caused by the giant tsunami event in March 2011. Radioactive contaminants released during the passage of typhoons may have significantly affected not only Japanese but also Korean coastal waters. The model domain covered most of the northwestern Pacific including marginal seas such as the East/Japan Sea and the Yellow Sea. Several numerical experiments were conducted case studies focusing on the westward diffusion from the southern coast of Japan of contaminants derived from the source site (Fukushima) according to various attributes of the typhoons, such as intensity, track, etc. The model produced the following results 1) significant amounts of contaminants were transported in a westward direction by easterly winds favorable for generating a coastal air stream along the southern Japanese coast, 2) the contaminants reached as far as Osaka Bay with the passage of typhoons, forced by a 5-day positive sinusoidal form with a (right-) northward track east of Fukushima, and 3) the range of contamination was significant, extending to the interior of the East/Japan Sea around the Tsugaru Strait. The model suggests that contaminants and/or radioactivity released from Fukushima with the passage of typhoons can affect Korean waters including the northeastern East/Japan Sea around the Tsugaru Strait, especially when the typhoon tracks are favorable for generating a westward coastal air stream along the southern Japanese coast.