• 제목/요약/키워드: East Korean Warm Current

검색결과 221건 처리시간 0.023초

동해의 쓰시마난류 분포역에서 음속의 변동 (Variation of Sound Speed in the Tsushima Warm Current Region of the East Sea)

  • 이충일;조규대;김상우
    • 한국수산과학회지
    • /
    • 제36권2호
    • /
    • pp.170-177
    • /
    • 2003
  • This study is to analyze the influence of the Tsushima Warm Current (TWC) on the variation of sound speed in the southern part of the East Sea. Sound speed is calculated by method of Chen and Millero (1977:, based on the CTD data measured in June of 1996. Sound speed in the central part of the TWC is about $45ms^{-1}$ more fast than that in the other regions without the TWC. Sound speed minimum layer (SML) in the TWC region exists between loom and 341 m, while it exists between 260m and 290m in the non-TWC region. SML distributes along the path of TWC over continental shelf in the coastal waters of Japan.

Hydrography around Dokdo

  • Chang, Kyung-Il;Kim, Youn-Bae;Suk, Moon-Sik;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • 제24권4호
    • /
    • pp.369-389
    • /
    • 2002
  • CTD data taken in the Ulleung Basin between 1996 and 2001 are analyzed to understand the hydrography around Dokdo. Major features occurring in the Ulleung Basin such as the path variability of the East Korean Warm Current (EKWC), the location and size of the Ulleung Warm Eddy (UWE) and the position of the Offshore Branch along the Japanese coast all influence the hydrography around Dokdo. The Dokdo area frequently lies in the eastern part of the meandering EKWC and the UWE that results in a filting of isolines sloping upwards to Dokdo in the Ulleung Interplain Gap (UIG) between Ulleungdo and Dokdo. Subsurface water near Dokdo then becomes colder and less saline than water near Ulleungdo. Two cases that are opposite to this general trend are also identified when the Dokdo area is directly affected by the EKWC and by a small scale eddy ffd by the Offshore Branch. High salinity cores and warm waters are then found near Dokdo with isolines sloping upwards to Ulleungdo. Freshening of the East Sea Intermediate Water was observed in the UIG when neither the EKWC nor the UWE was developed in the Ulleung Basin during June-November 2000.

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

95년 한국동해에서의 수온전선과 와동류의 구조 및 특성조사 (The characteristics and structures of thermal front and warm eddy observed in the southeastern part of the east sea in 1995)

  • 임근식;왕갑식;윤재열;김기철;김영규;김구
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.120-135
    • /
    • 1996
  • The characteristics and fluctuations of structures and spatial distributions of thermal fronts and warm eddy in the Southeastern part of the East sea are discussed based on the data collected by the Naval Academy, Korea during Feb. 6-9, May 9-19 and Oct. 12-18, 1995. The thermal fronts existed very often at the sea off the Pohang-Ulsan, The generation of the thermal front is related with the development of the North Korea Cold Current. The warm eddy is located in the central part of the Ulleung basin where the local depth exceeds 1500m. This warm eddy is a major contributor to mass transport in the northern part of the East Sea. It is evident that knowledge of warm eddy is important in understanding the circulation in the western part of the East Sea.

  • PDF

2013~2015년 울릉 난수성 소용돌이의 수온변동 (Temperature Variation in the Ulleung Warm Eddy during 2013~2015)

  • 최용규
    • 해양환경안전학회지
    • /
    • 제22권2호
    • /
    • pp.205-211
    • /
    • 2016
  • 울릉 난수성 소용돌이의 수온 변동을 보기 위하여, 동해중부해역(동해항-독도의 지선)에서 2013년 7월부터 2015년 7월까지 소모성 수온기록계(XBT)와 국립수산과학원의 정선 해양 관측 자료를 이용하여 살펴보았다. 울릉 난수성 소용돌이의 완전한 형태를 볼 수 없었을지라도, 조사 단면은 울릉 난수성 소용돌이의 특징을 잘 나타내었다. 그 결과, 수온의 변동계수는 평균 수온이 $3{\sim}4^{\circ}C$의 범위를 가지는 250 m 깊이에서 가장 크게 나타났다. 250 m 층의 수온 변동계수의 수평적 분포는 울릉도와 한국 동해안 사이의 해역에서 가장 컸으며, 이는 울릉 난수성 소용돌이의 핵이 아닌 주변부 해역이었다. 울릉 난수성 소용돌이는 한국 동해 연안에서 남북 혹은 동서로 움직였다, 울릉 난수성 소용돌이는 주로 울릉도 남서 해역에 존재하였으며, 남북 방향으로의 이동성이 동서 방향으로의 이동성보다 크게 나타났다. 250 m 깊이에서 수온의 변동계수가 크게 나타난 것은 울릉 난수성 소용돌이의 하층부에 있는 동해중층수와의 상호 작용에 의한 것으로 보인다. 이것은 울릉 난수성 소용돌이의 하부 깊이에서 울릉 난수성 소용돌이 주변부와 동해중층수와의 상호 작용이 활발하게 발생하고 있음을 시사하고 있다.

A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause

  • Oh, Kyung-Hee;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • 제35권4호
    • /
    • pp.161-169
    • /
    • 2000
  • A seasonal circulation in the East China Sea and the Yellow Sea and its possible cause have been studied with CSK data during 1965-1989. Water mass distributions are clear in winter, but not in summer because the upper layer waters are quite influenced by atmosphere. To solve the problem, a water mass analysis by mixing ratio is used for the lower layer waters. The results show that the distribution of Tsushima Warm Current Water expands to the Yellow Sea in winter and retreats to the East China Sea in summer. It means that there is a very slow seasonal circulation between the East China Sea and the Yellow Sea: Tsushima Warm Current Water flows into the Yellow Sea in winter and coastal water flows out of the Yellow Sea in summer. By the circulation, the front between Tsushima Warm Current Water and coastal water moves toward the shelf break in summer so that the flow is faster in the deeper region. The process eventually makes the transport in the Korea Strait increase. The Kuroshio does not seem to influence the process. A possible mechanism of the process is the seasonal change of sea surface slope due to different local effects of surface heating and diluting between the East China Sea and the Yellow Sea.

  • PDF

제주해협 동쪽 입구에 출현하는 설상의 난수 (Tongue-like Warm Water Appeared in the East Entrance of the Jeju Strait)

  • 노홍길;평야민행
    • 한국수산과학회지
    • /
    • 제16권4호
    • /
    • pp.299-304
    • /
    • 1983
  • 제주해협 동쪽 입구에는 주년 대마난류 수괴인 설상 난수가 존재한다. 그러므로 이 설상 난수 때문에 동 해협 서쪽에서 유입하는 해수의 유향이 이 해협내에서 변화되 한국 남해 연안쪽을 향할 수 있어 제주해협내의 중, 저층수는 한국 남해 연안수 형성에 중요한 영향을 미칠 수 있다. 이 설상 난수는 동계에 강하고 하계에 약하므로 대마난류는 하계 보다 동계에 한국 남해 연안에 접근하며, 이 난류의 북쪽 경계도 거문도와 소리도 연안까지 자주 접근하고 있다.

  • PDF

동해지역 NOAA/AVHRR 고해상도 주평균 해수면 온도의 통계적 분석 : 지역적 변동성과 엘니뇨/남방진동과의 관계성 (Statistical Analysis of NOAA/AVHRR High Resolution Weekly SST in the East Sea: Regional Variability and Relationships with ENSO)

  • 권태영;이방용;이정순
    • Ocean and Polar Research
    • /
    • 제23권4호
    • /
    • pp.361-376
    • /
    • 2001
  • The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.

  • PDF

東韓暖流의 强化에 따른 沿岸水의 應答에 관한 理論的 고찰 (On the respouse of Coastal Water to the intensification of East Korea Warm Current along the East Coast of Korea-A theoretical consideration)

  • 성영호
    • 한국해양학회지
    • /
    • 제21권4호
    • /
    • pp.229-235
    • /
    • 1986
  • 夏期 東韓暖의 强化에 따른 沿岸水의 應答에 대하여 理論的으로 고찰하였다. 간단한 解析모델을 이용하여 夏期 南向 沿岸流의 형성(37$^{\circ}$N 以北)및 연안 저층수 의 상승(36$^{\circ}$N 以南) 원인을 설명할 수 있었다. 이러한 현상의 미캐니즘은 급격한 海流의 强化에 따른 로스비 變形過程으로 밝혀졌다.

  • PDF

A Geostrophic Adjustment Model of the Seasonal Variation of the Ulleung Warm Eddy

  • Seung Young Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제4권3호
    • /
    • pp.101-111
    • /
    • 2001
  • In an attempt to demonstrate the seasonal variation of the Ulleung Warm Eddy (UWE), in which the UWE changes its shape from a warm core ring in early spring to a warm lens in late summer under the effect of surrounding East Korean Warm Current (EKWC) Water, a simple geostrophic adjustment model is considered. Model results indicate that the buoyancy increase of the EKWC Water and the strengthening of the EKWC towards summer, both of which are typical of this region, are the major factors governing the seasonal variation of the UWE.

  • PDF