• 제목/요약/키워드: East Asia Monsoon

검색결과 63건 처리시간 0.026초

Analysis of Tropospheric Carbon Monoxide over East Asia

  • Lee, S.H.;Choi, G.H.;Lim, H.S.;Lee, J.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.615-617
    • /
    • 2003
  • Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. The monthly average for CO shows a similar profile to that for O$_3$. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O$_3$ in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O$_3$ and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O$_3$, which tend to give the apparent summer minimums.

  • PDF

원격상관을 이용한 동아시아 6월 강수의 예측 (A Prediction of Precipitation Over East Asia for June Using Simultaneous and Lagged Teleconnection)

  • 이강진;권민호
    • 대기
    • /
    • 제26권4호
    • /
    • pp.711-716
    • /
    • 2016
  • The dynamical model forecasts using state-of-art general circulation models (GCMs) have some limitations to simulate the real climate system since they do not depend on the past history. One of the alternative methods to correct model errors is to use the canonical correlation analysis (CCA) correction method. CCA forecasts at the present time show better skill than dynamical model forecasts especially over the midlatitudes. Model outputs are adjusted based on the CCA modes between the model forecasts and the observations. This study builds a canonical correlation prediction model for subseasonal (June) precipitation. The predictors are circulation fields over western North Pacific from the Global Seasonal Forecasting System version 5 (GloSea5) and observed snow cover extent over Eurasia continent from Climate Data Record (CDR). The former is based on simultaneous teleconnection between the western North Pacific and the East Asia, and the latter on lagged teleconnection between the Eurasia continent and the East Asia. In addition, we suggest a technique for improving forecast skill by applying the ensemble canonical correlation (ECC) to individual canonical correlation predictions.

The Natural Environment during the Last Glacial Maximum Age around Korea and Adjacent Area

  • Yoon, Soon-Ock;Hwang, Sang-Ill
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.33-38
    • /
    • 2003
  • This study is conducted to examine the data of climate or environmental change in the northeastern Asia during the last glacial maximum. A remarkable feature of the 18,000 BP biome reconstructions for China is the mid-latitude extention of steppe and desert biomes to the modem eastern coast. Terrestrial deposits of glacial maximum age from the northern part of Yellow Sea suggest that this region of the continental shelf was occupied by desert and steppe vegetation. And the shift from temperate forest to steppe and desert implies conditions very much drier than present in eastern Asia. Dry conditions might be explained by a strong winter monsoon and/or a weak summer monsoon. A very strong depression of winter temperatures at LGM. has in the center of continent has influenced in northeast Asia similarly. The vegetation of Hokkaido at LGM was subarctic thin forest distributed on the northern area of middle Honshu and cool and temperate mixed forest at southern area of middle Honshu in Japan. The vegetation landscape of mountain- and East coast region of Korea was composed of herbaceous plants with sparse arctic or subarctic trees. The climate of yellow sea surface and west region of Korea was much drier and temperate steppe landscape was extended broadly. It is supposed that a temperate desert appeared on the west coast area of Pyeongan-Do and Cheolla-Do of Korea. The reconstruction of year-round conditions much colder than today right across China, Korea and Japan is consistent with biome reconstruction at the LGM.

  • PDF

CMIP5 기후 모형에서 나타나는 북서태평양 아열대 고기압의 변동성 (Variability of the Western North Pacific Subtropical High in the CMIP5 Coupled Climate Models)

  • 김은진;권민호;이강진
    • 대기
    • /
    • 제26권4호
    • /
    • pp.687-696
    • /
    • 2016
  • The western North Pacific subtropical high (WNPSH) in boreal summer has interannual and interdecadal variability, which affects East Asian summer monsoon variability. In particular, it is well known that the intensity of WNPSH is reversely related to that of summer monsoon in North East Asia in association with Pacific Japan (PJ)-like pattern. Many coupled climate models weakly simulate this large-scale teleconnection pattern and also exhibit the diverse variability of WNPSH. This study discusses the inter-model differences of WNPSH simulated by different climate models, which participate in the Coupled Model Intercomparison Project phase 5 (CMIP5). In comparing with reanalysis observation, the 29 CMIP5 models could be assorted into two difference groups in terms of interannual variability of WNPSH. This study also discusses the dynamical or thermodynamics factors for the differences of two groups of the CMIP5 climate models. As results, the regressed precipitation in well-simulating group onto the Nino3.4 index ($5^{\circ}N-5^{\circ}S$, $170^{\circ}W-120^{\circ}W$) is stronger than that in poorly-simulating group. We suggest that this difference of two groups of the CMIP5 climate models would have an effect on simulating the interannual variability of WNPSH.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • 한국지구과학회지
    • /
    • 제44권3호
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

하구역 간석지 퇴적물 대자율의 통합과 주기성 검토 (Integration and Periodicity of Magnetic Susceptibility Data on Estuarine Tidal Sediment)

  • 신영호
    • 한국지역지리학회지
    • /
    • 제21권3호
    • /
    • pp.593-607
    • /
    • 2015
  • 모산만 하구역 간석지 12개 주상시료의 22개 OSL 연대 자료와 1039개 대자율 자료를 활용해 통합 시계열 대 자율 자료를 구축한 후 동아시아 지역을 중심으로 홀로세 중후반의 환경 변화와 대비하였다. 대자율의 변화는 강수량 변화와 유의미한 관련성이 있었으며, 웨이블릿 변환을 통하여 250년의 주기성을 확인할 수 있었다. 250년의 주기성은 태양활동도, 대기-해양순환과 관련된 ENSO의 장주기와 연관이 있는 것으로 파악되며, 동아시아 여름 몬순, 여름철 강수 패턴의 변화, 엘니뇨 현상 등을 통해 설명될 수 있다. 대기-해양순환과 관련되어 증가하게 되는 강수량으로 인해, 하천유역에서 다량의 퇴적물이 침식 운반되어 하구역 간석지에 퇴적되어 대자율의 값을 높이는 것으로 판단된다.

  • PDF

동아시아 여름 강수 모의에 있어 한반도 주변 해륙분포가 미치는 영향 (Impacts of the Land-sea Distribution around Korean Peninsula on the simulation of East Asia Summer Precipitation)

  • 차유미;이효신;권원태;부경온
    • 대기
    • /
    • 제17권3호
    • /
    • pp.241-253
    • /
    • 2007
  • This paper investigates summer precipitation change in East Asia according to switching surface boundary condition over South Korea and Shantung. Simulations are carried out by ECHO-G/S for 20 years (1980-1999). Surface condition over both areas in ECHO-G/S is represented by ocean (OCN experiment). In OCN experiment, the summer precipitation is considerably underestimated around the Korean peninsula (the dry region) and overestimated over the eastern Tibetan Plateau (the wet region). It may be related that the lack of the heat sources from the unrealistically prescribed land-sea mask weakens northward expansion of rainband and the development of convective precipitation. Moreover the simulated rainband retreats before June in connection with the early genesis of summer monsoon circulation. The systematic bias of the summer precipitation over the dry and wet regions are reduced comparing with the OCN experiment when the land-sea masks over South Korea and Shantung are realistically considered as land (LND experiment). These improvements can be explained by the thermodynamical dissimilarity between land and ocean. Enhanced warming by switching the areas from sea to land has led to develop the thermal low over Yellow Sea with the cyclonic circulation. Thus, this cyclonic circulation supports moistures from the south to the dry region and blocks to the wet region. The heat transport from the land surface to atmosphere plays a key role in the developing convective precipitation in local scale and maintaining the precipitation and the rainband. Therefore, this results indicate that the design of the realistic land-sea distribution is required for the accurate simulation of the regional precipitation.

Analysis of Tropospheric Carbon Monoxide using MOPITT data

  • Lee, Sang-Hee;Park, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.373-377
    • /
    • 2002
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This work analyzes tropospheric carbon monoxide distributions using MOPITT data in East Asia and compared ozone distributions. In general, seasonal CO variations are characterized by a spring peak and decreased in the summer. Also, this work revealed that the seasonal cycles of CO are spring maximum and summer minimum with averaged concentrations ranging from 118ppbv to 170ppbv. The CO monthly means show a similar profiles to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, transport of the CO in the northeast Asia. The CO and O3 seasonal cycles in northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and O3, which tend to give the apparent minimum in summer.

  • PDF

한국기상학회 기후역학 분야 학술 발전 현황 (Academic Development Status of Climate Dynamics in Korean Meteorological Society)

  • 안순일;예상욱;서경환;국종성;김백민;김대현
    • 대기
    • /
    • 제33권2호
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

Relative contributions of weather systems to the changes of annual and extreme precipitation with global warming

  • Utsumi, Nobuyuki;Kim, Hyungjun;Kanae, Shinjiro;Oki, Taikan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.234-234
    • /
    • 2015
  • The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.

  • PDF