• Title/Summary/Keyword: Earthwork/bridge transition zone

Search Result 7, Processing Time 0.025 seconds

Dynamic Behavior on Transition Zone of the Railway Bridge-earthwork by Shape of Transition Zone (구조물 접속부 형상에 따른 철도 교량-토공 접속부의 동적거동)

  • Jung, Kwangsu;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.5-13
    • /
    • 2021
  • The transition is the zone where support stiffness suddenly increases in the railway industry. If the support stiffness increases, differential settlement will occur at the transition due to difference of stiffness, and the differential settlement causes problems for the train running safety and the roadbed that supports the track. In particular, a study on differential settlement at bridge-earthwork transition was only conducted to considering railway load in most cases. However, these studies have not taken account of earthquake despite earthquake has been occurred frequently in the recent, and it is necessary to consider earthquake. Therefore, in this study numerical analysis has been performed by changing the inclination of approach block, which determines the shape of the transition, and earthwork in order to verify the effect of the shape of the transition on the dynamic behavior at the bridge-earthwork transition. The result shows that the dynamic behavior at the bridge-earthwork transition was affected by the shape of transition.

Characteristics of Track and Train Behaviors on High-Speed Railway Bridge/Earthwork Transiton Zone (고속철도 교량/토공 접속부에서의 궤도 및 차량 거동 특성)

  • Lee, Il-Wha;Kang, Yun-Suk;Kim, Eun;Son, Ki-Jun;Park, Chan-Kyoung
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.129-134
    • /
    • 2003
  • It is very important to pay careful attention to construction of bridge/earthwork transition zone for high-speed railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. An abrupt change of stiffness across two adjacent track portions cause irregular settlement of roadbed, track irregularity, lack of girder bending moment and reduction of lateral resistance. Especially on high-speed railway, track irregularity of transition zone cause sincere effect to track stability and train safety. And so continuous maintenance is needed. To verify this effect and to improve transiton zone capacity, In situ test, track irregularity and train acceleration test were performed on high-speed railway bridge/earthwork Transiton Zone.

  • PDF

Evaluation of Deformation Characteristics for Bridge/Earthwork Transition Reinforcement Methods Considering Moving Load (이동하중을 고려한 교량/토공 접속부 보강방안별 변형특성 평가)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Kang, Tae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • The transition zone of the railway is the section which roadbed stiffness is suddenly varied like as tunnel-earthwork, bridge-earthwork and concrete track-ballasted track. There are about 450 tunnel-bridge transition sections on Kyungbu high-speed railway line. It is very important to pay careful attention to construction of these transition zones, in order to secure the train running safety. So, we developed a finite element model of the moving wheel loading to simulate the behavior of bridge-earthwork transitions in this paper. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition zone according to the reinforcement methods and length of transition zone which is adopted to high-speed railway. Based on the analysis results, we assessed the effect of the reinforcements on the transition zone of high-speed railway.

Experimental Study on the Variation of Track Stiffness between Earthwork and Bridge (교량 토공 접속부에서 궤도강성변화에 대한 실험적 연구)

  • 나성훈;서사범;손기준;김정환
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.281-288
    • /
    • 2001
  • In order to evaluate the effect of impact load at support stiffness transition area, the field estimations are performed at the transition zone between earthwork and bridge on test operation of KTX. Due to differential settlement caused by the variations of track support stiffness, large impact forces are investigated. However, the measured values such as wheel load, rail stress, displacement and acceleration in the transition area shows that the stiffness changes in the transition area are not abrupt, and the stiffness in the infra track structure varies continuously. In this experimental study, the parameters influencing safety of transition area are not governed by partial or local stiffness because cumulative passing loads are not sufficient on test operation of KTX.

  • PDF

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

Experimental Study of Stiffness transition zone by using Moving Wheel Loads (이동하중에 의한 지지강성 변화구간에 대한 실험적 연구)

  • Lee, Jin-Wook;Choi, Chan-Yong;Lee, Seong-Hyeok;Park, Tae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1056-1061
    • /
    • 2007
  • Railroad roadbed was consisted into structure types that earthwork, tunnel, bridge and joint sections. Joint section was affected a large factor confidence and safety of the train running by stiffness transition zone that track substructure stiffness change section as like between tunnel and earthwork from ballast track to concrete track. These problems are the results of increased dynamic wheel loads, which also lead to wear and tear on vehicle components and contribute to poor ride quality. The study presented in this paper was conducted on model test by using Wheel Moving Loading System.

  • PDF

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.