• 제목/요약/키워드: Earthquake load

검색결과 1,003건 처리시간 0.026초

지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가 (Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load)

  • 심윤보;김연태;김상철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.40-48
    • /
    • 2016
  • 본 연구는 지진이 발생할 경우 장대레일교량에 있어 레일과 상판 간의 종방향 상호작용에 미치는 영향을 검토하기 위한 것으로, 해석모델에 여러 하중조합과 함께 지진하중을 적용함으로써 대상 철도교량 레일에서의 축방향 부가응력과 레일-상판 간 상대변위의 변화를 산출하였다. 해석 결과, 본 연구 대상 철도교량의 경우 철도시설공단에서 제시하고 있는 표준응답스펙트럼을 적용할 때 레일부가응력은 대부분의 하중조합에 대해 허용기준 내의 값을 보이고 있는 반면, 레일-상판 상대변위는 공단에서 제시하는 허용기준을 초과하고 있는 것으로 나타났다. 따라서 레일-상판 상대변위가 레일부가응력에 비해 상대적으로 더 허용기준을 만족시키기 어렵다는 것을 알 수 있었으며, 아울러 고베 대지진과 같은 큰 규모의 지진이 발생하면 레일부가응력과 레일-상판 상대변위는 허용기준을 충족시키지 못하므로 이에 대한 적절한 내진 대비가 필요하다.

시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석 (Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period)

  • 최성현;김재요
    • 한국전산구조공학회논문집
    • /
    • 제35권4호
    • /
    • pp.235-242
    • /
    • 2022
  • 시공 중인 건물은 시공이 완료된 건물과는 다르게 콘크리트의 강도발현이 충분히 이루어지지 않았기 때문에 지진과 같은 자연재해에 더 취약한 모습을 가질 수 있다. 현재 국내 기준은 건축물의 내진등급별 최소성능 목표를 제시하고 있지만, 설계를 위한 지진하중은 재현주기 2,400년의 지진위험도를 기반으로 한다. 하지만 건물의 시공기간은 건물의 사용기간보다 훨씬 짧기 때문에 재현주기 2,400년의 지진을 시공 중인 건물에 적용하는 것은 과도하다. 따라서 이 연구는 주거용으로 사용되는 철근콘크리트 건물의 시공 중 지진하중을 분석하기 위해 5층, 15층, 25층, 60층 건물의 시공단계모델을 작성하고 재현주기에 따라 저감한 지진하중을 적용하여 구조적 안정성을 확인하였다. 그 결과, 시공기간에 따라 선정한 재현주기의 지진을 적용할 때 구조적 안정성을 확인하였으며, 건물의 규모의 따라 구조적 안전성을 확보할 수 있는 지진재현주기를 확인하였다.

지진의 규모와 거리에 따른 스펙트럼 형상과 다자유도 구조물에 대한 영향 (Spectral Shape in Accordance with the Magnitude and Distance of Earthquakes and Its Effect on Multi-DOF Structures)

  • 김진우;김동관;김호수
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.49-57
    • /
    • 2020
  • In this study earthquake records were collected for rock conditions that do not reflect seismic amplification by soil from global earthquake databases such as PEER, USGS, and ESMD. The collected earthquake records were classified and analyzed based on the magnitude and distance of earthquakes. Based on the analyzed earthquakes, the design response spectrum shape, effective ground acceleration, and amplification ratios for each period band are presented. In addition, based on the analyzed data, the story shear force for 5F, 10F, 15F, and 20F were derived through an analysis of the elastic time history for multi-DOF structures. The results from analyzing the rock earthquake record show that the seismic load tends to be amplified greatly in the short period region, which is similar to results observed from the Gyeongju and Pohang earthquakes. In addition, the results of the multi-DOF structure analysis show that existing seismic design criteria can be underestimated and designed in the high-order mode of short- and medium-long cycle structures.

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.

진동시험에 기초한 액상화 상세예측법 개발 (A New Assessment of Liquefaction Potential Based on the Dynamic Test)

  • 김수일;최재순;강한수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

Axial load detection in compressed steel beams using FBG-DSM sensors

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Lee, Zheng-Kuan;Tullini, Nerio
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.53-64
    • /
    • 2018
  • Nondestructive testing methods are required to assess the condition of civil structures and formulate their maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler-Bernoulli beam model and estimates the compressive load by using the measured displacement along the beam's length. Knowledge of flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating-differential settlement measurement (FBG-DSM) sensors at specific cross sections along the beam's length. The accuracy of midspan deflections offered by the FBG-DSM sensors provided excellent force estimations. Compressive load detection accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be successfully applied to steel beams with low slenderness under real conditions.

건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계 (Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure)

  • 이상현;민경원;박지훈;이루지
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.21-30
    • /
    • 2005
  • 본 연구에서는 지진하중을 받는 탄성구조물을 대상으로 층전단력 분포에 기초한 마찰감쇠기의 설계방법을 제시하였다. 먼저 마찰감쇠기의 슬립하중(slip-load)을 정규화하는 방법 별로 단자유도 시스템의 수치해석을 수행하고 비교하였다. 이를 통해 슬립하중과 가새 강성의 영향을 파악하였으며, 설치용 가새와 원구조물의 최적강성비를 찾았다. 다음으로는 다양한 고유주기와 층수를 갖는 구조물을 대상으로 수치해석을 통해 마찰감쇠기의 설치 층수와 위치의 결정방법 및 슬립하중의 분배 방법을 도출하였다. 이 과정에서 설치 층수가 포함된 성능지수를 사용하여 슬립하중의 총합으로부터 최적의 설치 층수를 도출하는 경험식을 제시하였다. 마지막으로 실제 지진하중을 사용한 수치해석을 통해 기존의 최적설계 방법과 비교하여 제안된 방법의 우수성을 입증하였다.

Dynamic response of a lined tunnel with transmitting boundaries

  • Fattah, Mohammed Y.;Hamoo, Mohammed J.;Dawood, Shatha H.
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.275-304
    • /
    • 2015
  • The objective of this paper is to investigate the validity of transmitting boundaries in dynamic analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is considered. The information about the dimensions and the material properties of the concrete tunnel and surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the effect of several parameters including the peak value of the horizontal component of earthquake displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented by Selvadurai and Karpurapu, 1988), and infinite boundaries modelled by dashpot elements (viscous boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic load represent two controlling factors in deciding the importance of using infinite boundaries. It was found that the results present significant differences when earthquake is applied as a base motion or a pressure load is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel's crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from tunnel's centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3).