• Title/Summary/Keyword: Earthquake damage

검색결과 1,203건 처리시간 0.024초

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

교량구조물의 내진설계 및 면진설계(교량 받침을 중심으로) (Seismic Design and Isolation Design for Highway Bridges)

  • 전규식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.115-122
    • /
    • 1998
  • Earthquake damage civil engineering structures every year in the world and bridges are no exception. Bridge structures have proven to be vulnerable to earthquake, sustaining damage to substructure and foundation and being totally destroys as superstructures collapse from their supporting elements. The poor seismic performance of bridge structures is surprising in view of the substantial advance made in design and construction for vertical load. Recently, bridge spans have been pushed further than before, alignment has become increasingly complex and aesthetic requirement have been become more demanding. To reduce the seismic force and to improve the safety of the advanced bridges, the bridge bearings which are the substructures and foundations and their connections to the superstructure become more important and critical elements. Therefore, the functions about seismic devices to be using as bridge bearing are discussed.

  • PDF

도시철도 개착식 터널의 내진성능보강시스템 기본설계 (Preliminary Design of Retrofitted System of Domestic Subway Tunnel)

  • 신홍영;김두기;권민호;장준호;김기홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.6-9
    • /
    • 2009
  • The occurrence rate of the earthquake more than magnitude 5 has been increased since 1990 and the damage of the Odaesan earthquake, 2007 was serious. Due to that, one may say that Korea is not any more safe for the earthquake. Therefore, it is necessary to prepare strategies for possible damage due to strong earthquakes in future. This study is to focus to develop the retrofitting system for the cut and cuver tunnels built without earthquake type load scenario, so that it can provide the safety of existing urban subway system against earthquakes.

  • PDF

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.

The M6.4 Lefkada 2003, Greece, earthquake: dynamic response of a 3-storey R/C structure on soft soil

  • Giarlelis, Christos;Lekka, Despina;Mylonakis, George;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.257-277
    • /
    • 2011
  • An evaluation is presented of the response of a 3-storey R/C structure during the destructive Lefkada earthquake of 14/08/2003. Key aspects of the event include: (1) the unusually strong levels of ground motion (PGA = 0.48 g, $SA_{max}$ = 2.2 g) recorded approximately 10 km from fault, in downtown Lefkada; (2) the surprisingly low structural damage in the area; (3) the very soft soil conditions ($V_{s,max}$ = 150 m/s). Structural, geotechnical and seismological aspects of the earthquake are discussed. The study focuses on a 3-storey building, an elongated structure of rectangular plan supported on strip footings, that suffered severe column damage in the longitudinal direction, yet minor damage in the transverse one. Detailed spectral and time-history analyses highlight the interplay of soil, foundation and superstructure in modifying seismic demand in the two orthogonal directions of the building. It is shown that soil-structure interaction may affect inelastic seismic response and alter the dynamic behavior even for relatively flexible systems such as the structure at hand.

국내 무보강 조적조 건물의 지진취약도함수 (Seismic Fragility Function for Unreinforced Masonry Buildings in Korea)

  • 안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.293-303
    • /
    • 2021
  • Seismic fragility functions for unreinforced masonry buildings were derived based on the incremental dynamic analysis of eight representative inelastic numerical models for application to Korea's earthquake damage estimation system. The effects of panel zones formed between piers and spandrels around openings were taken into account explicitly or implicitly regarding stiffness and inelastic deformation capacity. The site response of ground motion records measured at the rock site was used as input ground motion. Limit states were proposed based on the fraction of structural components that do not meet the required performance from the nonlinear static analysis of each model. In addition to the randomness of ground motion considered in the incremental dynamic analysis explicitly, supplementary standard deviation due to uncertainty that was not reflected in the fragility assessment procedure was added. The proposed seismic fragility functions were verified by applying them to the damage estimation of masonry buildings located around the epicenter of the 2017 Pohang earthquake and comparing the result with actual damage statistics.

Fire-after-earthquake resistance of steel structures using rotational capacity limits

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.867-891
    • /
    • 2016
  • This paper addresses numerically the behavior of steel structures under Fire-after-Earthquake (FAE) loading. The study is focused on a four-storey library building and takes into account the damage that is induced in structural members due to earthquake. The basic objective is the assessment of both the fire-behavior and the fire-resistance of the structure in the case where the structure is damaged due to earthquake. The combined FAE scenarios involve two different stages: during the first stage, the structure is subjected to the ground motion record, while in the second stage the fire occurs. Different time-acceleration records are examined, each scaled to multiple levels of the Peak Ground Acceleration (PGA) in order to represent more severe earthquakes with lower probability of occurrence. In order to study in a systematic manner the behavior of the structure for the various FAE scenarios, a two-dimensional beam finite element model is developed, using the non-linear finite element analysis code MSC-MARC. The fire resistance of the structure is determined using rotational limits based on the ductility of structural members that are subjected to fire. These limits are temperature dependent and take into account the level of the structural damage at the end of the earthquake and the effect of geometric initial imperfections of structural members.

Study on dynamic behavior of a new type of two-way single layer lattice dome with nodal eccentricity

  • Satria, Eka;Kato, Shiro;Nakazawa, Shoji;Kakuda, Daisuke
    • Steel and Composite Structures
    • /
    • 제8권6호
    • /
    • pp.511-530
    • /
    • 2008
  • This paper discusses a feasibility of a new type of two-way system for single layer lattice domes with nodal eccentricity by investigating the dynamic behavior under earthquake motions. The proposed dome is composed of two main arches, intersecting each other with T-joint struts to provide space for tensioning membranes. The main purposes of this study are to calculate the nonlinear dynamic response under severe earthquake motions and to see the possibility of using this new type of two-way system for single layer lattice domes against earthquake motions. The results show that the main arches remain elastic except yielding of the joints of strut members that can be used to absorb some amount of strain energy at strong earthquake motion. Consequently, deformation of the main arches can be reduced and any heavy damages on the main arches can be minimized. A kind of damage-control characteristic appeared in this system may be utilized against severe earthquake motions, showing a possibility of designing a new type of single layer lattice dome.

라이프라인과 공공설비의 지진피해 평가 (Earthquake Damage Assessment of Lifelines and Utilities)

  • 전상수
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.9-17
    • /
    • 2001
  • 본 논문은 지진으로 인한 라이프라인과 공공설비에 대한 위험 지역 묘사 및 물리적 손실추정에 중점을 두었으며, 또한, 지리정보시스템(GIS)과 지진영향의 공간적 특성 평가에 사용된 송수관망을 통한 GIS 적용이 강조되었다. 1994년도의 Northridge 지진에서 얻어진 물 공급 능력이 기록된 GIS 자료를 통하여 매장된 라이프라인 피해와 다양한 지진 매개변수들의 상호 관계가 검증되었으며, 통계학적으로 가장 뚜렷한 상호 관계를 갖는 지진 매개변수들이 발견되었다. Northridge지진으로부터 얻어진 GIS 자료를 이용하여 송수관의 손상률, 종류, 직경, 그리고 다양한 지진 매개변수들이 평가되었다.

  • PDF