• Title/Summary/Keyword: Earthquake acceleration

Search Result 845, Processing Time 0.602 seconds

Dimensional analysis of base-isolated buildings to near-fault pulses

  • Istrati, Denis;Spyrakos, Constantine C.;Asteris, Panagiotis G.;Panou-Papatheodorou, Eleni
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.33-47
    • /
    • 2020
  • In this paper the dynamic behavior of an isolated building subjected to idealized near-fault pulses is investigated. The building is represented with a simple 2-DOF model. Both linear and non-linear behavior of the isolation system is considered. Using dimensional analysis, in conjunction with closed form mathematical idealized pulses, appropriate dimensionless parameters are defined and self-similar curves are plotted on dimensionless graphs, based on which various conclusions are reached. In the linear case, the role of viscous damping is examined in detail and the existence of an optimum value of damping along with its significant variation with the number of half-cycles is shown. In the nonlinear case, where the behavior of the building depends on the amplitude of the excitation, the benefits of dimensional analysis are evident since the influence of the dimensionless 𝚷-terms is easily examined. Special consideration is given to the normalized strength of the non-linear isolation system that appears to play a complex role which greatly affects the response of the 2-DOF. In the last part of the paper, a comparison of the responses to idealized pulses between a linear fixed-base SDOF and the respective isolated 2-DOF with both linear and non-linear damping is conducted and it is shown that, under certain values of the superstructure and isolation system characteristics, the use of an isolation system can amplify both the normalized acceleration and displacement of the superstructure.

Vibration Characteristics Evaluation According to Natural Periods of Structures and Location of a Sky-bridge (구조물의 고유진동주기 및 스카이브릿지 설치위치에 따른 진동특성평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3068-3073
    • /
    • 2013
  • Recently, studies of vibration control performance improvement of tall buildings connected by a sky-bridge have been conducted. In this study, the effect of difference of natural vibration periods of two buildings and install location of a sky-bridge on vibration control performance has been investigated. To this end, 40-story and 50-story building structures were selected as example structures. Analytical models were developed by varying the natural period difference ratio from 1.0 to 1.5. Artificial earthquake load based on KBC2009 was used as an excitation for time history analyses. Based on numerical simulation results, it has been shown that control performance for displacement and velocity of tall buildings connected by a sky-bridge is improved as the difference of natural periods of two buildings increases and the linked story becomes higher. However, in the case of acceleration response, it shows a counter trend compared to displacement and velocity responses.

Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System (계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.23-30
    • /
    • 2018
  • Recently, there are highly interests on structural damping to improve resistance of seismic and wind. It has been frequently used hysteresis damping devices made of steel because of economic efficiency, construction, and maintenance. This paper presents the effective reduction of seismic response by using Kagome damping system(SKDS) in rahmen system apartment building. The proposed system is designed to be activated by the relative displacement between the building and the stairs. It is performed nonlinear dynamic analysis to review the effects of earthquake response reduction for the 20-stories rahmen framed apartment building. In the analysis of the SKDS system, the reduction of maximum response displacement, maximum response acceleration and layer shear force are compared with the seismic design, and the result show that allowable story displacement is satisfied with Korean Building Code (KBC 2016).

Dynamic Response Characteristics of Embankment Model for Various Slope Angles (다양한 경사를 가지는 제방모형의 지반 증폭 특성)

  • Kim, Hoyeon;Jin, Yong;Lee, Yonghee;Kim, Hak-sung;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this study, the dynamic response characteristics of the embankment model were analyzed using shaking table experiments. Laminar shear box was used to minimize the boundary effect of the model. The ratio of the vertical length to horizontal length of the slopes were 1:1, 1:1.5, and 1:2. The sensor array which is consist of 12 accelerometers was used to measure acceleration time-histories at each location of the slope model. The dynamic response characteristics of the models were analyzed for sine wave, sinesweep wave, and artificial earthquake wave in this study. The experimental results show that the dynamic response of the embankment model is increased with the slope angle. Furthermore, the experimental setup used in this study was verified with the comparative analysis between experimental results and 1-D analytical simulation on the flat ground model.

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

Probabilistic Analysis of Failure of Soil Slopes during Earthquakes (지진시 사면파괴의 확률론적 해석)

  • 김영수;정성관
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 1989
  • This study presents a probabilistic analysis of the stability of homogeneous soil slopes during earthquakes. The stability of the slope is measured through its probability of failure rather than the customary factor of safety. The maximum horizontal ground acceleration is deterimined with Donovan and McGuire equation. The earthquake magnitude (m) is a random variable the Probability density function f(m) has been obtained with a use of Richter law. The potential failure surfaces are taken to be of an exponential shape (log-spiral) , Uncertainties of the shear strength parameters along potential failure surface are expressed by one-dimensional random field model. From a first order analysis the mean and variance of safety margin is osculated. The dependence on significant seismic parameters of the probability of failure of the slope is examined and the results are presented in a number of graphs and tables. On the base of the results obtained in this study, it is concluled that (1) the present model is useful in assessing the reliability of soil slopes under both static and seismic conditions: and (2) the probability of failure of a soil slope is greatly affected by the values of the seismic parameters that are associated with it.

  • PDF

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.