• 제목/요약/키워드: Earthquake Response Analysis

검색결과 1,357건 처리시간 0.023초

Hualien 대형내진모델시험의 지진응답 계측데이타 분석 (Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test)

  • 현창헌
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가 (Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis)

  • 이철호;김선웅
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF

응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석 (The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method)

  • 이동근;김태호
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.169-178
    • /
    • 1998
  • 일반적으로 응답스펙트럼 해석법은 지지해석에 널리 쓰이고 있지만 동적하중에 의한 구조물의 진동해석은 주로 시간이력해석에 의존한다. 그러나 시간이력해석법은 응답스펙트럼 해석법에 비하여 복잡하며 어렵고 또한 시간이 많이 소요된다 따라서본 논문에서는 응답스펙트럼 해석법을 이용하여 구조물의 연직 최대 응답을 예상하는 방법을 연구하였다 이를 위하여 우선 지지해석에서 응답스펙트럼 해석법과 시간이력해석법에 의하여 구조물의 최대응답을 구하여 비교하였으며 동적하중에 대한 응답스펙트럼 해석을 수행하는 과정을 나타내었다. 마지막으로 제안된 방법과 시간이력해석에 의한 결과를 비교하였다.

  • PDF

지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구 (An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction)

  • 오현준;김유석
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

지반-구조물의 동적 상호작용 해석법(II) (Method for soil-structure dynamic interaction analysis(II))

  • 황성춘
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.152-162
    • /
    • 2001
  • Comparison of results from two different methods of soil-structure dynamic interaction analysis is presented. Two methods include transfromed static and seismic response analyes. In seismic response analysis, the difference in result of total stress analysis relative to effective stress analysis is investigated.

  • PDF

질점계 비선형 지진응답해석에 의한 구조물의 역량스펙트럼 제안 (Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis)

  • 유진선;양원직;이원호;김형준
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.501-508
    • /
    • 2014
  • 본 논문에서는 질점계 비선형 지진응답해석을 통한 역량스펙트럼 도출방법을 소개한다. 일반적인 건축물의 손상도 평가는 비선형 등가정적해석(Push-over Analysis)을 통하여 건축물의 역량스펙트럼을 도출하고, 역량스펙트럼과 요구스펙트럼의 교차점을 성능점으로 평가하고 있다. 등가정적해석은 지진의 영향을 등가의 정적하중으로 환산한 후 이를 이용하여 정적해석을 수행함으로써 구조물의 지진에 의한 거동을 예측하는 방법이다. 이 방법은 고차모드 및 층별 동특성의 영향을 고려할 수 없다. 따라서 건축물의 동특성이 반영된 역량스펙트럼을 산출하기 위하여 질점계 비선형 지진응답해석을 진행하여 건축물의 역량 스펙트럼을 제안하고자 한다.

비보강 조적조 건물의 반응 수정 계수에 관한 연구 (A Study on the Response Modification Factor of Unreinforced masonry Buildings)

  • 정상훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.265-272
    • /
    • 1999
  • there is no earthquake resistant design code for the unreinforced masonary(URM) buildings in Korea. But it does not mean that all URM buldings in Korea is safe under the possible extent of an earthquake. The purpose of this study is in the inelastic analysis of unreinforced masonary walls with many different types of openings and carry out their ductilities an strengths, response modification factor of each wall has been compared and the most appropriate response modification factor for URM building in Korea has been proposed.

  • PDF

수정진도법에 의한 지진시의 사면안정해석에 관하여 (Slope Stability Analysis Using Modified Seismic Intensity Method During Earthquake)

  • 오병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.124-131
    • /
    • 2000
  • Numerical analysis of slop stability is carried out using seismic intensity, modified seismic intensity, and response seismic coefficient methods. It is found by comparing each of method that minimum safety factor precedes the required safety factor. It is also proved during analysis that most conservative method is the earthquake response analysis method, next is the response seismic coefficient method, and last one is the seismic intensity method. Usually, seismic intensity method is applied in analysis of slop stability. However, in view of safety factor, modified seismic intensity method is more conservative than seismic intensity method. Also modified seismic intensity method is appropriate when height of structure analyzed is high enough.

  • PDF

일본 한신 대지진에 있어서의 포트 아일랜드의 지진응답해석 (Earthquake Response Analysis at Port Island during the 1995 Hyogoken-nanbu Earthquake(Japan))

  • 황성춘
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.477-484
    • /
    • 2000
  • Earthquake response analyses are conducted for the investigation of the ground shaking during the 1995 Hyogoken-nambu earthquake. Port Island a man made island with about 8{{{{ KAPPA m^2 }} area is chosen for this purpose Because earthquake measurement with vertical array was conducted there. Strain dependent characteristics of soil can be modeled well into Hardin-Drnevich Model. Four analyses are conducted : total stress analysis by equivalent linear method non-linear method. and two effective stress analyses. All analyses except equivalent linear analysis show fairy good agreement with observed record mainly because the non-linear behavior of Holocene clay layer has predominant effect on the behavior of fill, However detailed investigation show that effective stress analyses give much better prediction than total stress analyses.

  • PDF