• 제목/요약/키워드: Earthquake Response Analysis

검색결과 1,381건 처리시간 0.028초

지반 응답 해석 Round Robin Test의 입력 지진파 및 물성에 관한 고찰 (Investigation into the Input Earthquake Motions and Properties for Round Robin Test on Ground Response Analysis)

  • 선창국;한진태;최정인;김기석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.266-292
    • /
    • 2007
  • Round Robin Test (RRT) on ground response analyses was conducted for three sites in Korea based on several site investigation data, which include borehole logs with the N values from standard penetration test (SPT) for all three sites and additionally cone tip resistance profiles for two sites. Three input earthquake motions together with the site investigation data were provided for the RRT. A total of 12 teams participating in this RRT presented the results of ground response analyses using equivalent-linear and/or nonlinear method. Each team determined input geotechnical properties by using empirical relationships and literatures based on own judgment, with the exception of the input motions. Herein, the characteristics of input motions were compared in terms of the frequency and period, and the selection of the depth to bedrock, on which the motions is impinged, was discussed considering geologic conditions in Korea. Furthermore, a variety of geotechnical properties such as shear wave velocity profiles and soil nonlinear curves were investigated with the input properties used in this RRT.

  • PDF

고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석 (Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings)

  • 유봉;이재한;구경회
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Effects of modelling on the earthquake response of asymmetrical multistory buildings

  • Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.211-225
    • /
    • 1994
  • Responses of asymmetrical multistorey buildings to earthquakes are obtained by quasi-static code approach and real time dynamic analysis, using two different structural models. In the first model, all vertical members are assumed to be restrained at the slab levels and hence their end rotations, about horizontal axes, are taken as zero. In the second model this restriction is removed and the rotation is assumed to be proportional to the lateral stiffness of the member. A simple microcomputer based procedure is used in the analyses, by both models. Numerical examples are presented where results obtained from both the models are given. Effects of modelling on the response of three buildings, each with a different type and degree of asymmetry, are studied. Results for deflections and shear forces are presented and the effects of the type of model on the response are discussed.

구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - I 선정방법 (Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - I Ground Motion Selection)

  • 하성진;한상환;지현우
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.171-179
    • /
    • 2017
  • For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석 (Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank)

  • 윤장혁;강태원;양현익;전종수
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

기반암 전단파속도의 부지응답특성 영향평가 (The Effect of the Shear Wave Velocity of a Seismic Control Point on Site Response Analysis)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 부지응답 해석 시 통제운동 지점의 전단파속도가 부지응답해석에 미치는 영향을 살펴보았다. 내진설계기준 연구(II)(건설교통부, 1997)에서는 '재현주기별 지진가속도의 작용 위치는 "기본적인 지진재해도는 보통암지반을 기준으로 평가한다."라고 정의하고 있다. 그러나 보통암지반(SB)의 전단파속도 범위가 $760m/sec{\sim}1500m/sec$로 폭넓게 분포되어 있어, 부지응답 해석 시 통제운동지점의 선택에 따라 해석의 결과에 차이가 발생할 수 있다. 따라서, 본 논문에서는 국내의 대표적인 해성퇴적지반층인 인천 및 부산지역의 상세부지조사결과를 바탕으로 1차원 등가선형해석을 수행하였다. 통제운동지점인 기반암 전단파속도에 따른 지층내 가속도의 크기 변화, 그리고 이에 따른 액상화 안전율 변화정도를 살펴보았다. 또한, 해석결과와 외국의 내진설계기준을 바탕으로 국내 내진설계기준의 개선방향에 대하여 살펴보았다.

방진원 고무를 이용한 가새형 감쇠기의 진동제어 실험연구 (Experimental Study on Vibration Control of Bracing Dampers using Rubbers)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.249-257
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make bracing dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the bracing dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Axial response of PWR fuel assemblies for earthquake and pipe break excitations

  • Jhung, Myung J.
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.149-165
    • /
    • 1997
  • A dynamic time-history analysis of the coupled internals and core in the vertical direction is performed as a part of the fuel assembly qualification program. To reflect the interaction between the fuel rods and grid cage, friction element is developed and is implemented. Also derived here is a method to calculate a hydraulic force on the reactor internals due to pipe break. Peak responses are obtained for the excitations induced from earthquake and pipe break. The dynamic responses such as fuel assembly axial forces and lift-off characteristics are investigated.