• 제목/요약/키워드: Earthquake Response Analysis

검색결과 1,373건 처리시간 0.029초

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Dynamic reliability analysis of offshore wind turbine support structure under earthquake

  • Kim, Dong-Hyawn;Lee, Gee-Nam;Lee, Yongjei;Lee, Il-Keun
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.609-623
    • /
    • 2015
  • Seismic reliability analysis of a jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function by using the dynamic response of the support structure, a number of dynamic calculations must be performed in a First-Order Reliability Method (FORM). That means analysis costs become too high. In this paper, a new reliability analysis approach using a static response is used. The dynamic effect of the response is considered by introducing a new parameter called the Peak Response Factor (PRF). The probability distribution of PRF can be estimated by using the peak value in the dynamic response. The probability distribution of the PRF was obtained by analyzing dynamic responses during a set of ground motions. A numerical example is presented to compare the proposed approach with the conventional static response-based approach.

단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구 (A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System)

  • 박상기;조정래;조창백;이진혁;김동찬
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

KBC 비구조요소 내진설계 하중 (KBC Seismic Design Force for Nonstructural Element)

  • 김대곤
    • 한국공간구조학회논문집
    • /
    • 제14권1호
    • /
    • pp.77-84
    • /
    • 2014
  • Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.

진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법 (In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method)

  • 조성국;소기환
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.

지진 관측데이터 기반 지반응답스펙트럼 추정 알고리즘 제안 및 평가 (Proposal and Evaluation of Ground Response Spectrum Estimation Algorithm based on Seismic Observation Data)

  • 안진희;정진우;홍유찬;박재봉;최형석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.13-22
    • /
    • 2019
  • 본 연구는 지진계측시스템이 설치되지 않은 중소형 교량의 지진손상 수준을 평가하기 위하여 대상 중소형 교량 인근에 위치한 지진관측소의 지진관측 데이터를 이용하여 대상 교량위치에서의 지반응답스펙트럼을 추정하기 위한 알고리즘을 제시하였다. 일반적으로 중소형 교량의 내진설계 및 성능평가는 동적해석법 중 응답스펙트럼해석법이 가장 널리 활용되고 있으므로 대상 중소형 교량에 대한 평가 지진력으로 지반응답스펙트럼을 적용할 수 있는 알고리즘을 제시하였으며, 제안된 알고리즘을 이용한 프로그램 알고리즘도 제안하고 제안된 알고리즘을 통하여 실제 지진계측데이터를 이용하여 특정 위치에서의 지반응답스펙트럼 추정 예를 나타내었다.

지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석 (Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity)

  • 김민규;임윤묵;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

층지진하중분포 예측을 위한 모드조합법 (Modal Combination Method for Prediction of Story Earthquake Load Profiles)

  • 엄태성;이혜린;박홍근
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.65-75
    • /
    • 2006
  • 건물의 지진응답을 평가하기 위하여 비선형 푸시오버 해석을 수행한다. 구조물의 비탄성 지진응답을 정확히 예측하기 위해서는, 비선형해석에 사용되는 층하중분포가 구조물의 시간이력 지진응답 동안 실제로 발생되는 지진하중분포를 나타낼 수 있어야 한다. 본 연구에서는 건축물의 지진하중분포를 예측하기 위하여 새로운 모드조합법을 개발하였다. 개발된 모드조합법에서는 모드조합계수를 곱한 각 모드의 스펙트럼응답을 조합하여 다수의 지진하중분포를 예측한다. 모멘트 골조와 켄틸레버 벽체에 대한 변수연구를 수행하였다. 변수연구 결과를 토대로, 각 고유모드가 구조물의 지진응답에 미치는 영향을 나타내는 모드조합계수를 정의하였다. 다양한 정형 및 수직 비정형 구조물에 대하여 제안된 계수모드조합법을 적용하였다. 그 결과 제안된 모드조합법은 시간이력 응답 동안 구조물에 실제로 발생되는 지진하중분포를 정확히 예측할 수 있었다.